Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 34(21-22): 1493-1502, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33033055

RESUMO

Catalytic-inactivating mutations within the Drosophila enhancer H3K4 mono-methyltransferase Trr and its mammalian homologs, MLL3/4, cause only minor changes in gene expression compared with whole-gene deletions for these COMPASS members. To identify essential histone methyltransferase-independent functions of Trr, we screened to identify a minimal Trr domain sufficient to rescue Trr-null lethality and demonstrate that this domain binds and stabilizes Utx in vivo. Using the homologous MLL3/MLL4 human sequences, we mapped a short ∼80-amino-acid UTX stabilization domain (USD) that promotes UTX stability in the absence of the rest of MLL3/4. Nuclear UTX stability is enhanced when the USD is fused with the MLL4 HMG-box. Thus, COMPASS-dependent UTX stabilization is an essential noncatalytic function of Trr/MLL3/MLL4, suggesting that stabilizing UTX could be a therapeutic strategy for cancers with MLL3/4 loss-of-function mutations.


Assuntos
Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes Letais/genética , Histona-Lisina N-Metiltransferase/genética , Oxirredutases N-Desmetilantes/genética , Animais , Deleção de Genes , Regulação da Expressão Gênica/genética , Células HCT116 , Humanos , Domínios Proteicos , Estabilidade Proteica
2.
Sci Rep ; 10(1): 7138, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346083

RESUMO

The lack of tools to reliably detect RanBP9 in vivo has significantly hampered progress in understanding the biological functions of this scaffold protein. We report here the generation of a novel mouse strain, RanBP9-TT, in which the endogenous protein is fused with a double (V5-HA) epitope tag at the C-terminus. We show that the double tag does not interfere with the essential functions of RanBP9. In contrast to RanBP9 constitutive knock-out animals, RanBP9-TT mice are viable, fertile and do not show any obvious phenotype. The V5-HA tag allows unequivocal detection of RanBP9 both by IHC and WB. Importantly, immunoprecipitation and mass spectrometry analyses reveal that the tagged protein pulls down known interactors of wild type RanBP9. Thanks to the increased detection power, we are also unveiling a previously unknown interaction with Nucleolin, a protein proposed as an ideal target for cancer treatment. In summary, we report the generation of a new mouse line in which RanBP9 expression and interactions can be reliably studied by the use of commercially available αtag antibodies. The use of this line will help to overcome some of the existing limitations in the study of RanBP9 and potentially unveil unknown functions of this protein in vivo such as those linked to Nucleolin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sistemas CRISPR-Cas , Proteínas do Citoesqueleto/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Ligação Proteica , RNA Mensageiro/metabolismo , Nucleolina
3.
Artigo em Inglês | MEDLINE | ID: mdl-34778565

RESUMO

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA