Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 14(3): 390-409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320757

RESUMO

Post-translational modifications are key in the regulation of activity, structure, localization, and stability of most proteins in eukaryotes. Phosphorylation is potentially the most studied post-translational modification, also due to its reversibility and thereby the regulatory role this modification often plays. While most research attention was focused on kinases in the past, phosphatases remain understudied, most probably because the addition and presence of the modification is more easily studied than its removal and absence. Here, we report the identification of an uncharacterized protein tyrosine phosphatase PPH-7 in C. elegans, a member of the evolutionary conserved PTPN family of phosphatases. Lack of PPH-7 function led to reduction of fertility and embryonic lethality at elevated temperatures. Proteomics revealed changes in the regulation of targets of the von Hippel-Lindau (VHL) E3 ligase, suggesting a potential role for PPH-7 in the regulation of VHL.


Assuntos
Caenorhabditis elegans , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Caenorhabditis elegans/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Temperatura , Proteínas Tirosina Fosfatases , Desenvolvimento Embrionário/genética , Fertilidade/genética
2.
PLoS One ; 8(6): e67076, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840591

RESUMO

Small GTPases of the Sar/Arf family are essential to generate transport containers that mediate communication between organelles of the secretory pathway. Guanine nucleotide exchange factor (GEFs) activate the small GTPases and help their anchorage in the membrane. Thus, GEFs in a way temporally and spatially control Sar1/Arf1 GTPase activation. We investigated the role of the ArfGEF GBF-1 in C. elegans oocytes and intestinal epithelial cells. GBF-1 localizes to the cis-Golgi and is part of the t-ER-Golgi elements. GBF-1 is required for secretion and Golgi integrity. In addition, gbf-1(RNAi) causes the ER reticular structure to become dispersed, without destroying ER exit sites (ERES) because the ERES protein SEC-16 was still localized in distinct punctae at t-ER-Golgi units. Moreover, GBF-1 plays a role in receptor-mediated endocytosis in oocytes, without affecting recycling pathways. We find that both the yolk receptor RME-2 and the recycling endosome-associated RAB-11 localize similarly in control and gbf-1(RNAi) oocytes. While RAB5-positive early endosomes appear to be less prominent and the RAB-5 levels are reduced by gbf-1(RNAi) in the intestine, RAB-7-positive late endosomes were more abundant and formed aggregates and tubular structures. Our data suggest a role for GBF-1 in ER structure and endosomal traffic.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Caenorhabditis elegans/genética , Células Cultivadas , Endocitose , Retículo Endoplasmático/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Oócitos/metabolismo , Interferência de RNA
3.
Nucleic Acids Res ; 35(12): 4124-40, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17567608

RESUMO

Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-gamma-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , DNA/química , DNA/ultraestrutura , DNA Helicases , Enzimas Reparadoras do DNA , DNA Super-Helicoidal/análise , Rad51 Recombinase/genética , Rad51 Recombinase/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
4.
Proc Natl Acad Sci U S A ; 103(26): 9767-72, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16785421

RESUMO

Rad54 protein is a Snf2-related dsDNA-specific ATPase essential for homologous recombination mediated by Rad51 protein, the eukaryotic RecA ortholog. Snf2-related enzymes couple ATP hydrolysis with translocation on dsDNA to remodel or dissociate a wide variety of protein-dsDNA complexes. Rad54 and Rad51 interact through species-specific contacts and mutually stimulate their biochemical activities. Specifically, Rad51 bound to dsDNA, the product of homologous recombination after DNA-strand exchange, stimulates the Rad54 ATPase up to 6-fold, leading to the turnover of Rad51 in the product complex. Electron microscopy visualized the Rad51-Rad54 interaction on dsDNA, showing that an oligomeric form of Rad54 associates preferentially with termini of the Rad51-dsDNA filament. Our data support a mechanism of processive dsDNA-Rad51 filament dissociation by the translocating Rad54 protein.


Assuntos
Rad51 Recombinase/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases , DNA/química , DNA/metabolismo , DNA Helicases , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/química , Microscopia Eletrônica , Mapeamento de Interação de Proteínas , Transporte Proteico , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química
5.
J Biol Chem ; 280(28): 26303-11, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15908697

RESUMO

Rad51 is a homolog of the bacterial RecA protein and is central for recombination in eukaryotes performing homology search and DNA strand exchange. Rad51 and RecA share a core ATPase domain that is structurally similar to the ATPase domains of helicases and the F1 ATPase. Rad51 has an additional N-terminal domain, whereas RecA protein has an additional C-terminal domain. Here we show that glycine 103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 is important for binding to single-stranded and duplex DNA. The Rad51-G103E mutant protein is deficient in DNA strand exchange and ATPase activity due to a primary DNA binding defect. The N-terminal domain of Rad51 is connected to the ATPase core through an extended elbow linker that ensures flexibility of the N-terminal domain. Molecular modeling of the Rad51-G103E mutant protein shows that the negatively charged glutamate residue lies on the surface of the N-terminal domain facing a positively charged patch composed of Arg-260, His-302, and Lys-305 on the ATPase core domain. A possible structural explanation for the DNA binding defect is that a charge interaction between Glu-103 and the positive patch restricts the flexibility of the N-terminal domain. Rad51-G103E was identified in a screen for Rad51 interaction-deficient mutants and was shown to ablate the Rad54 interaction in two-hybrid assays (Krejci, L., Damborsky, J., Thomsen, B., Duno, M., and Bendixen, C. (2001) Mol. Cell. Biol. 21, 966-976). Surprisingly, we found that the physical interaction of Rad51-G103E with Rad54 was not affected. Our data suggest that the two-hybrid interaction defect was an indirect consequence of the DNA binding defect.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Glicina/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Arginina/química , DNA/química , DNA Helicases , Enzimas Reparadoras do DNA , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ácido Glutâmico/química , Glutationa Transferase/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rad51 Recombinase , Recombinases Rec A/química , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Software , Técnicas do Sistema de Duplo-Híbrido
7.
Mol Cell ; 10(5): 1175-88, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12453424

RESUMO

Rad54 protein is a member of the Swi2/Snf2-like family of DNA-dependent/stimulated ATPases that dissociate and remodel protein complexes on dsDNA. Rad54 functions in the recombinational DNA repair (RAD52) pathway. Here we show that Rad54 protein dissociates Rad51 from nucleoprotein filaments formed on dsDNA. Addition of Rad54 protein overcomes inhibition of DNA strand exchange by Rad51 protein bound to substrate dsDNA. Species preference in the Rad51 dissociation and DNA strand exchange assays underlines the importance of specific Rad54-Rad51 protein interactions. Rad51 protein is unable to release dsDNA upon ATP hydrolysis, leaving it stuck on the heteroduplex DNA product after DNA strand exchange. We suggest that Rad54 protein is involved in the turnover of Rad51-dsDNA filaments.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/química , Proteínas Fúngicas/metabolismo , Proteínas Nucleares , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA Helicases , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/química , Proteínas Fúngicas/química , Ligação Proteica , Rad51 Recombinase , Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Tempo
8.
J Biol Chem ; 277(48): 46205-15, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12359723

RESUMO

Rad54 protein is a Snf2-like ATPase with a specialized function in the recombinational repair of DNA damage. Rad54 is thought to stimulate the search of homology via formation of a specific complex with the presynaptic Rad51 filament on single-stranded DNA. Herein, we address the interaction of Rad54 with Rad51 filaments on double-stranded (ds) DNA, an intermediate in DNA strand exchange with unclear functional significance. We show that Saccharomyces cerevisiae Rad54 exerts distinct modes of ATPase activity on partially and fully saturated filaments of Rad51 protein on dsDNA. The highest ATPase activity is observed on dsDNA containing short patches of yeast Rad51 filaments resulting in a 6-fold increase compared with protein-free DNA. This enhanced ATPase mode of yeast Rad54 can also be elicited by partial filaments of human Rad51 protein but to a lesser extent. In contrast, the interaction of Rad54 protein with duplex DNA fully covered with Rad51 is entirely species-specific. When yeast Rad51 fully covers dsDNA, Rad54 protein hydrolyzes ATP in a reduced mode at 60-80% of its rate on protein-free DNA. Instead, saturated filaments with human Rad51 fail to support the yeast Rad54 ATPase. We suggest that the interaction of Rad54 with dsDNA-Rad51 complexes is of functional importance in homologous recombination.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae , DNA Helicases , Enzimas Reparadoras do DNA , Proteínas Fúngicas/metabolismo , Rad51 Recombinase , Saccharomyces cerevisiae/metabolismo
9.
Nucleic Acids Res ; 30(13): 2727-35, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12087154

RESUMO

Rad54 plays key roles in homologous recombination (HR) and double-strand break (DSB) repair in yeast, along with Rad51, Rad52, Rad55 and Rad57. Rad54 belongs to the Swi2/Snf2 family of DNA-stimulated ATPases. Rad51 nucleoprotein filaments catalyze DNA strand exchange and Rad54 augments this activity of Rad51. Mutations in the Rad54 ATPase domain (ATPase(-)) impair Rad54 function in vitro, sensitize yeast to killing by methylmethane sulfonate and reduce spontaneous gene conversion. We found that overexpression of ATPase(-) Rad54 reduced spontaneous direct repeat gene conversion and increased both spontaneous direct repeat deletion and spontaneous allelic conversion. Overexpression of ATPase(-) Rad54 decreased DSB-induced allelic conversion, but increased chromosome loss and DSB-dependent lethality. Thus, ATP hydrolysis by Rad54 contributes to genome stability by promoting high-fidelity DSB repair and suppressing spontaneous deletions. Overexpression of wild-type Rad54 did not alter DSB-induced HR levels, but conversion tract lengths were reduced. Interestingly, ATPase(-) Rad54 decreased overall HR levels and increased tract lengths. These tract length changes provide new in vivo evidence that Rad54 functions in the post-synaptic phase during recombinational repair of DSBs.


Assuntos
Adenosina Trifosfatases/metabolismo , Dano ao DNA , Proteínas Fúngicas/metabolismo , Conversão Gênica/genética , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , DNA Helicases , Enzimas Reparadoras do DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genótipo , Metanossulfonato de Metila/farmacologia , Mutação , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA