Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 471: 18-33, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290818

RESUMO

The spine gives structural support for the adult body, protects the spinal cord, and provides muscle attachment for moving through the environment. The development and maturation of the spine and its physiology involve the integration of multiple musculoskeletal tissues including bone, cartilage, and fibrocartilaginous joints, as well as innervation and control by the nervous system. One of the most common disorders of the spine in human is adolescent idiopathic scoliosis (AIS), which is characterized by the onset of an abnormal lateral curvature of the spine of <10° around adolescence, in otherwise healthy children. The genetic basis of AIS is largely unknown. Systematic genome-wide mutagenesis screens for embryonic phenotypes in zebrafish have been instrumental in the understanding of early patterning of embryonic tissues necessary to build and pattern the embryonic spine. However, the mechanisms required for postembryonic maturation and homeostasis of the spine remain poorly understood. Here we report the results from a small-scale forward genetic screen for adult-viable recessive and dominant zebrafish mutations, leading to overt morphological abnormalities of the adult spine. Germline mutations induced with N-ethyl N-nitrosourea (ENU) were transmitted and screened for dominant phenotypes in 1229 F1 animals, and subsequently bred to homozygosity in F3 families; from these, 314 haploid genomes were screened for adult-viable recessive phenotypes affecting general body shape. We cumulatively found 40 adult-viable (3 dominant and 37 recessive) mutations each leading to a defect in the morphogenesis of the spine. The largest phenotypic group displayed larval onset axial curvatures, leading to whole-body scoliosis without vertebral dysplasia in adult fish. Pairwise complementation testing of 16 mutant lines within this phenotypic group revealed at least 9 independent mutant loci. Using massively-parallel whole genome or whole exome sequencing and meiotic mapping we defined the molecular identity of several loci for larval onset whole-body scoliosis in zebrafish. We identified a new mutation in the skolios/kinesin family member 6 (kif6) gene, causing neurodevelopmental and ependymal cilia defects in mouse and zebrafish. We also report multiple recessive alleles of the scospondin and a disintegrin and metalloproteinase with thrombospondin motifs 9 (adamts9) genes, which all display defects in spine morphogenesis. Our results provide evidence of monogenic traits that are essential for normal spine development in zebrafish, that may help to establish new candidate risk loci for spine disorders in humans.


Assuntos
Mutação em Linhagem Germinativa , Coluna Vertebral/crescimento & desenvolvimento , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Embrião não Mamífero/embriologia , Genoma , Humanos , Neurogênese/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Dev Biol ; 430(2): 385-396, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28322738

RESUMO

Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[ßactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[ßactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/ß-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess ß-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.


Assuntos
Blastômeros/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/análise , Proteínas Recombinantes de Fusão/análise , Peixe-Zebra/embriologia , Actinas/genética , Animais , Animais Geneticamente Modificados , Blastômeros/química , Blastômeros/ultraestrutura , Blástula/química , Blástula/ultraestrutura , Padronização Corporal , Calmodulina/genética , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Fragmentos de Peptídeos/genética , Peptídeos/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/genética
3.
PLoS Genet ; 13(2): e1006564, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28222105

RESUMO

Cell proliferation has generally been considered dispensable for anteroposterior extension of embryonic axis during vertebrate gastrulation. Signal transducer and activator of transcription 3 (Stat3), a conserved controller of cell proliferation, survival and regeneration, is associated with human scoliosis, cancer and Hyper IgE Syndrome. Zebrafish Stat3 was proposed to govern convergence and extension gastrulation movements in part by promoting Wnt/Planar Cell Polarity (PCP) signaling, a conserved regulator of mediolaterally polarized cell behaviors. Here, using zebrafish stat3 null mutants and pharmacological tools, we demonstrate that cell proliferation contributes to anteroposterior embryonic axis extension. Zebrafish embryos lacking maternal and zygotic Stat3 expression exhibit normal convergence movements and planar cell polarity signaling, but transient axis elongation defect due to insufficient number of cells resulting largely from reduced cell proliferation and increased apoptosis. Pharmacologic inhibition of cell proliferation during gastrulation phenocopied axis elongation defects. Stat3 regulates cell proliferation and axis extension in part via upregulation of Cdc25a expression during oogenesis. Accordingly, restoring Cdc25a expression in stat3 mutants partially suppressed cell proliferation and gastrulation defects. During later development, stat3 mutant zebrafish exhibit stunted growth, scoliosis, excessive inflammation, and fail to thrive, affording a genetic tool to study Stat3 function in vertebrate development, regeneration, and disease.


Assuntos
Proliferação de Células/genética , Desenvolvimento Embrionário/genética , Fator de Transcrição STAT3/genética , Proteínas de Peixe-Zebra/genética , Fosfatases cdc25/genética , Animais , Polaridade Celular/genética , Gástrula/crescimento & desenvolvimento , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Morfogênese/genética , Proteínas Mutantes/genética , Fator de Transcrição STAT3/biossíntese , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/biossíntese , Fosfatases cdc25/biossíntese
4.
Sci Rep ; 6: 23433, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005960

RESUMO

The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through ß1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.


Assuntos
Cartilagem/metabolismo , Condrócitos/citologia , Fibronectinas/metabolismo , Osteocondrodisplasias/genética , Diester Fosfórico Hidrolases/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Cartilagem/citologia , Cartilagem/patologia , Ciclo Celular , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Marcação de Genes , Integrina beta1/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Osteocondrodisplasias/patologia , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Stem Cell Reports ; 1(2): 166-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24052951

RESUMO

The fetal liver kinase 1 (FLK-1)(+) hemangioblast can generate hematopoietic, endothelial, and smooth muscle cells (SMCs). ER71/ETV2, GATA2, and SCL form a core transcriptional network in hemangioblast development. Transient coexpression of these three factors during mesoderm formation stage in mouse embryonic stem cells (ESCs) robustly enhanced hemangioblast generation by activating bone morphogenetic protein (BMP) and FLK-1 signaling while inhibiting phosphatidylinositol 3-kinase, WNT signaling, and cardiac output. Moreover, etsrp, gata2, and scl inhibition converted hematopoietic field of the zebrafish anterior lateral plate mesoderm to cardiac. FLK-1(+) hemangioblasts generated by transient coexpression of the three factors (ER71-GATA2-SCL [EGS]-induced FLK-1(+)) effectively produced hematopoietic, endothelial, and SMCs in culture and in vivo. Importantly, EGS-induced FLK-1(+) hemangioblasts, when codelivered with mesenchymal stem cells as spheroids, were protected from apoptosis and generated functional endothelial cells and SMCs in ischemic mouse hindlimbs, resulting in improved blood perfusion and limb salvage. ESC-derived, EGS-induced FLK-1(+) hemangioblasts could provide an attractive cell source for future hematopoietic and vascular repair and regeneration.


Assuntos
Células-Tronco Embrionárias/citologia , Hemangioblastos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Hemangioblastos/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/lesões , Mesoderma/metabolismo , Camundongos , Dados de Sequência Molecular , Neovascularização Fisiológica , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Dis Model Mech ; 5(6): 881-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22773753

RESUMO

Neurofibromatosis type 1 (NF1) is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1) gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML), optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs). In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a(+/-); nf1b(-/-); p53(e7/e7) animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.


Assuntos
Transformação Celular Neoplásica/genética , Desenvolvimento Embrionário/genética , Genes da Neurofibromatose 1 , Neurofibromatose 1/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proliferação de Células , Transformação Celular Neoplásica/patologia , Hiperplasia , Larva/genética , Aprendizagem , Melanóforos/metabolismo , Melanóforos/patologia , Dados de Sequência Molecular , Atividade Motora , Mutação/genética , Bainha de Mielina/metabolismo , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/química , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Oligodendroglia/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas ras/metabolismo
7.
PLoS One ; 6(4): e18650, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490931

RESUMO

Cyto-nuclear shuttling of ß-catenin is at the epicenter of the canonical Wnt pathway and mutations in genes that result in excessive nuclear accumulation of ß-catenin are the driving force behind the initiation of many cancers. Recently, Naked Cuticle homolog 1 (Nkd1) has been identified as a Wnt-induced intracellular negative regulator of canonical Wnt signaling. The current model suggests that Nkd1 acts between Disheveled (Dvl) and ß-catenin. Here, we employ the zebrafish embryo to characterize the cellular and biochemical role of Nkd1 in vivo. We demonstrate that Nkd1 binds to ß-catenin and prevents its nuclear accumulation. We also show that this interaction is conserved in mammalian cultured cells. Further, we demonstrate that Nkd1 function is dependent on its interaction with the cell membrane. Given the conserved nature of Nkd1, our results shed light on the negative feedback regulation of Wnt signaling through the Nkd1-mediated negative control of nuclear accumulation of ß-catenin.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Embrião não Mamífero/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , beta Catenina/genética
8.
Dis Model Mech ; 4(2): 255-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20959633

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin) or TSC2 (encodes tuberin) genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242) in the tsc2 gene. This tsc2(vu242) allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2(vu242) is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2(vu242/vu242) homozygous zebrafish, and is moderately increased in tsc2(vu242/+) heterozygotes. Forebrain neurons are poorly organized in tsc2(vu242/vu242) homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2(vu242/vu242) mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.


Assuntos
Códon sem Sentido/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/patologia , Tamanho Celular/efeitos dos fármacos , Modelos Animais de Doenças , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas Mutantes/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/transplante , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra/embriologia
9.
Development ; 138(2): 291-302, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21177342

RESUMO

Progression through the cell cycle relies on oscillation of cyclin-dependent kinase (Cdk) activity. One mechanism for downregulating Cdk signaling is to activate opposing phosphatases. The Cdc14 family of phosphatases counteracts Cdk1 phosphorylation in diverse organisms to allow proper exit from mitosis and cytokinesis. However, the role of the vertebrate CDC14 phosphatases, CDC14A and CDC14B, in re-setting the cell for interphase remains unclear. To understand Cdc14 function in vertebrates, we cloned the zebrafish cdc14b gene and used antisense morpholino oligonucleotides and an insertional mutation to inhibit its function during early development. Loss of Cdc14B function led to an array of phenotypes, including hydrocephaly, curved body, kidney cysts and left-right asymmetry defects, reminiscent of zebrafish mutants with defective cilia. Indeed, we report that motile and primary cilia were shorter in cdc14b-deficient embryos. We also demonstrate that Cdc14B function in ciliogenesis requires its phosphatase activity and can be dissociated from its function in cell cycle control. Finally, we propose that Cdc14B plays a role in the regulation of cilia length in a pathway independent of fibroblast growth factor (FGF). This first study of a loss of function of a Cdc14 family member in a vertebrate organism reveals a new role for Cdc14B in ciliogenesis and consequently in a number of developmental processes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas de Ciclo Celular/genética , Divisão Celular , Cílios/genética , Cílios/ultraestrutura , Clonagem Molecular , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Mutagênese Insercional , Oligodesoxirribonucleotídeos Antissenso/genética , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Development ; 137(8): 1327-37, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20332150

RESUMO

Gastrulation movements form the germ layers and shape them into the vertebrate body. Gastrulation entails a variety of cell behaviors, including directed cell migration and cell delamination, which are also involved in other physiological and pathological processes, such as cancer metastasis. Decreased Prostaglandin E(2) (PGE(2)) synthesis due to interference with the Cyclooxygenase (Cox) and Prostaglandin E synthase (Ptges) enzymes halts gastrulation and limits cancer cell invasiveness, but how PGE(2) regulates cell motility remains unclear. Here we show that PGE(2)-deficient zebrafish embryos, impaired in the epiboly, internalization, convergence and extension gastrulation movements, exhibit markedly increased cell-cell adhesion, which contributes to defective cell movements in the gastrula. Our analyses reveal that PGE(2) promotes cell protrusive activity and limits cell adhesion by modulating E-cadherin transcript and protein, in part through stabilization of the Snai1a (also known as Snail1) transcriptional repressor, an evolutionarily conserved regulator of cell delamination and directed migration. We delineate a pathway whereby PGE(2) potentiates interaction between the receptor-coupled G protein betagamma subunits and Gsk3beta to inhibit proteasomal degradation of Snai1a. However, overexpression of beta-catenin cannot stabilize Snai1a in PGE(2)-deficient gastrulae. Thus, the Gsk3beta-mediated and beta-catenin-independent inhibition of cell adhesion by Prostaglandins provides an additional mechanism for the functional interactions between the PGE(2) and Wnt signaling pathways during development and disease. We propose that ubiquitously expressed PGE(2) synthesizing enzymes, by promoting the stability of Snai1a, enable the precise and rapid regulation of cell adhesion that is required for the dynamic cell behaviors that drive various gastrulation movements.


Assuntos
Gástrula/fisiologia , Prostaglandinas G/fisiologia , Peixe-Zebra/genética , Animais , Adesão Celular/fisiologia , Primers do DNA , Dinoprostona/deficiência , Dinoprostona/metabolismo , Embrião não Mamífero/fisiologia , Gastrulação/fisiologia , Hibridização In Situ , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
11.
Dev Cell ; 12(3): 391-402, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336905

RESUMO

The vertebrate heart arises during gastrulation as cardiac precursors converge from the lateral plate mesoderm territories toward the embryonic midline and extend rostrally to form bilateral heart fields. G protein-coupled receptors (GPCRs) mediate functions of the nervous and immune systems; however, their roles in gastrulation remain largely unexplored. Here, we show that the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated in physiology and angiogenesis, control heart field formation. Zebrafish gastrulae express agtrl1b in the lateral plate mesoderm, while apelin expression is confined to the midline. Reduced or excess Agtrl1b or Apelin function caused deficiency of cardiac precursors and, subsequently, the heart. In Apelin-deficient gastrulae, the cardiac precursors converged inefficiently to the heart fields and showed ectopic distribution, whereas cardiac precursors overexpressing Apelin exhibited abnormal morphology and rostral migration. Our results implicate GPCR signaling in movements of discrete cell populations that establish organ rudiments during vertebrate gastrulation.


Assuntos
Quimiocinas/metabolismo , Gástrula/metabolismo , Coração/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mioblastos Cardíacos/metabolismo , Organogênese/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Receptores de Apelina , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Quimiocinas/genética , Desenvolvimento Embrionário/fisiologia , Gástrula/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/fisiologia , Mioblastos Cardíacos/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Development ; 134(5): 921-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17267448

RESUMO

Human ARHGEF11, a PDZ-domain-containing Rho guanine nucleotide exchange factor (RhoGEF), has been studied primarily in tissue culture, where it exhibits transforming ability, associates with and modulates the actin cytoskeleton, regulates neurite outgrowth, and mediates activation of Rho in response to stimulation by activated Galpha12/13 or Plexin B1. The fruit fly homolog, RhoGEF2, interacts with heterotrimeric G protein subunits to activate Rho, associates with microtubules, and is required during gastrulation for cell shape changes that mediate epithelial folding. Here, we report functional characterization of a zebrafish homolog of ARHGEF11 that is expressed ubiquitously at blastula and gastrula stages and is enriched in neural tissues and the pronephros during later embryogenesis. Similar to its human homolog, zebrafish Arhgef11 stimulated actin stress fiber formation in cultured cells, whereas overexpression in the embryo of either the zebrafish or human protein impaired gastrulation movements. Loss-of-function experiments utilizing a chromosomal deletion that encompasses the arhgef11 locus, and antisense morpholino oligonucleotides designed to block either translation or splicing, produced embryos with ventrally-curved axes and a number of other phenotypes associated with ciliated epithelia. Arhgef11-deficient embryos often exhibited altered expression of laterality markers, enlarged brain ventricles, kidney cysts, and an excess number of otoliths in the otic vesicles. Although cilia formed and were motile in these embryos, polarized distribution of F-actin and Na(+)/K(+)-ATPase in the pronephric ducts was disturbed. Our studies in zebrafish embryos have identified new, essential roles for this RhoGEF in ciliated epithelia during vertebrate development.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Actinas/metabolismo , Animais , Blástula/metabolismo , Padronização Corporal , Encéfalo/anormalidades , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Cílios/fisiologia , Epitélio/embriologia , Epitélio/metabolismo , Gástrula/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Membrana dos Otólitos/anormalidades , Membrana dos Otólitos/embriologia , Membrana dos Otólitos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , ATPase Trocadora de Sódio-Potássio/metabolismo , Fibras de Estresse/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
13.
Dev Cell ; 11(5): 613-27, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17084355

RESUMO

The molecular and cellular mechanisms governing cell motility and directed migration in response to the chemokine SDF-1 are largely unknown. Here, we demonstrate that zebrafish primordial germ cells whose migration is guided by SDF-1 generate bleb-like protrusions that are powered by cytoplasmic flow. Protrusions are formed at sites of higher levels of free calcium where activation of myosin contraction occurs. Separation of the acto-myosin cortex from the plasma membrane at these sites is followed by a flow of cytoplasm into the forming bleb. We propose that polarized activation of the receptor CXCR4 leads to a rise in free calcium that in turn activates myosin contraction in the part of the cell responding to higher levels of the ligand SDF-1. The biased formation of new protrusions in a particular region of the cell in response to SDF-1 defines the leading edge and the direction of cell migration.


Assuntos
Quimiotaxia , Citoplasma/fisiologia , Células Germinativas/fisiologia , Miosinas/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Actinas/fisiologia , Animais , Membrana Celular/fisiologia , Polaridade Celular , Quimiocina CXCL12 , Quimiocinas CXC/fisiologia , Citoesqueleto/fisiologia , Pseudópodes/fisiologia , Receptores CXCR4/fisiologia , Peixe-Zebra/embriologia
14.
Cell Metab ; 4(2): 155-62, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16890543

RESUMO

The critical developmental and genetic requirements of copper metabolism during embryogenesis are unknown. Utilizing a chemical genetic screen in zebrafish, we identified small molecules that perturb copper homeostasis. Our findings reveal a role for copper in notochord formation and demonstrate a hierarchy of copper metabolism within the embryo. To elucidate these observations, we interrogated a genetic screen for embryos phenocopied by copper deficiency, identifying calamity, a mutant defective in the zebrafish ortholog of the Menkes disease gene (atp7a). Copper metabolism in calamity is restored by human ATP7A, and transplantation experiments reveal that atp7a functions cell autonomously, findings with important therapeutic implications. The gene dosage of atp7a determines the sensitivity to copper deprivation, revealing that the observed developmental hierarchy of copper metabolism is informed by specific genetic factors. Our data provide insight into the developmental pathophysiology of copper metabolism and suggest that suboptimal copper metabolism may contribute to birth defects.


Assuntos
Adenosina Trifosfatases/genética , Cobre/metabolismo , Notocorda/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , ATPases Transportadoras de Cobre , Embrião não Mamífero , Dados de Sequência Molecular , Fenótipo , Peixe-Zebra/genética
15.
Dev Biol ; 289(2): 263-72, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16310177

RESUMO

Prostaglandin G/H synthases (PGHS), commonly referred to as cyclooxygenases (COX-1 and COX-2), catalyze a key step in the synthesis of biologically active prostaglandins (PGs), the conversion of arachidonic acid (AA) into prostaglandin H(2) (PGH(2)). PGs have important functions in a variety of physiologic and pathologic settings, including inflammation, cardiovascular homeostasis, reproduction, and carcinogenesis. However, an evaluation of prostaglandin function in early development has been difficult due to the maternal contribution of prostaglandins from the uterus. The emergence of zebrafish as a model system has begun to provide some insights into the roles of this signaling cascade during vertebrate development. In zebrafish, COX-1 derived prostaglandins are required for two distinct stages of development, namely during gastrulation and segmentation. During gastrulation, PGE(2) signaling promotes cell motility, without altering the cell shape or directional migration of gastrulating cells. During segmentation, COX-1 signaling is also required for posterior mesoderm development, including the formation of vascular tube structures, angiogenesis of intersomitic vessels, and pronephros morphogenesis. We propose that deciphering the role for prostaglandin signaling in zebrafish development could yield insight and ultimately address the mechanistic details underlying various disease processes that result from perturbation of this pathway.


Assuntos
Desenvolvimento Embrionário , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/fisiologia , Animais , Eicosanoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Modelos Animais , Modelos Biológicos , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
16.
Zebrafish ; 1(4): 319-26, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-18248209

RESUMO

Dr. Solnica-Krezel is Associate Professor in the Department of Biological Sciences at Vanderbilt University in Nashville, Tennessee. She received a Master's degree in molecular biology from Warsaw University, Poland, and a Ph.D. in oncology from the University of Wisconsin-Madison, McArdle Laboratory for Cancer Research. Dr. Solnica-Krezel's research focuses on the mechanisms of gastrulation using zebrafish as a model organism.

17.
Gene Expr Patterns ; 4(3): 339-44, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15053985

RESUMO

Cell movement plays a central role in both normal embryogenesis and the development of diseases such as cancer. Therefore, identification and analysis of proteins controlling cell movement is of special importance. The zebrafish trilobite locus encodes a Van Gogh/Strabismus homologue, which regulates diverse cell migratory behaviors during embryogenesis. Trilobite is most similar to human Van Gogh-like 2 (VANGL2)/Strabismus 1 and mouse Loop-tail associated protein/Lpp1. Both human and mouse genomes encode a second Strabismus homologue referred to as VANGL1/Strabismus 2 and Lpp2, respectively. This prompted us to ask whether another van gogh/strabismus gene, one more closely related to human VANGL1, exists in the zebrafish genome. This paper describes the identification of zebrafish vangl1 and provides the first spatiotemporal expression and functional analysis of a vertebrate vangl1 homologue. Our data indicate that vangl1 and trilobite/vangl2 are expressed in largely non-overlapping domains during embryogenesis. Injection of synthetic vangl1 RNA partially suppressed the gastrulation defect in trilobite mutant embryos, suggesting that Vangl1 and Trilobite/Vangl2 have similar biochemical activities.


Assuntos
Proteínas de Membrana/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Mapeamento Cromossômico , Clonagem Molecular , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Development ; 131(1): 203-16, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14660439

RESUMO

The vertebrate posterior body is formed by a combination of the gastrulation movements that shape the head and anterior trunk and posterior specific cell behaviors. Here, we investigated whether genes that regulate cell movements during gastrulation [no tail (ntl)/brachyury, knypek (kny) and pipetail (ppt)/wnt5] interact to regulate posterior body morphogenesis. Both kny;ntl and ppt;ntl double mutant embryos exhibit synergistic trunk and tail shortening by early segmentation. Gene expression analysis in the compound mutants indicates that anteroposterior germ-layer patterning is largely normal and that the tail elongation defects are not due to failure to specify or maintain posterior tissues. Moreover, ntl interacts with ppt and kny to synergistically regulate the posterior expression of the gene encoding bone morphogenetic protein 4 (bmp4) but not of other known T-box genes, fibroblast growth factor genes or caudal genes. Examination of mitotic and apoptotic cells indicates that impaired tail elongation is not simply due to decreased cell proliferation or increased cell death. Cell tracing in ppt;ntl and kny;ntl mutants demonstrates that the ventral derived posterior tailbud progenitors move into the tailbud. However, gastrulation-like convergence and extension movements and cell movements within the posterior tailbud are impaired. Furthermore, subduction movements of cells into the mesendoderm are reduced in kny;ntl and ppt;ntl mutants. We propose that Ntl and the non-canonical Wnt pathway components Ppt and Kny function in parallel, partially redundant pathways to regulate posterior body development. Our work initiates the genetic dissection of posterior body morphogenesis and links genes to specific tail-forming movements. Moreover, we provide genetic evidence for the notion that tail development entails a continuation of mechanisms regulating gastrulation together with mechanisms unique to the posterior body.


Assuntos
Embrião não Mamífero/fisiologia , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Cauda/embriologia , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Padronização Corporal/fisiologia , Genótipo , Movimento/fisiologia , Mutação , Fenótipo , Transdução de Sinais , Cauda/anormalidades , Proteínas Wnt , Peixe-Zebra/genética
19.
Genes Dev ; 17(3): 368-79, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12569128

RESUMO

In vertebrate embryos, formation of anterior neural structures requires suppression of Wnt signals emanating from the paraxial mesoderm and midbrain territory. In Six3(-/-) mice, the prosencephalon was severely truncated, and the expression of Wnt1 was rostrally expanded, a finding that indicates that the mutant head was posteriorized. Ectopic expression of Six3 in chick and fish embryos, together with the use of in vivo and in vitro DNA-binding assays, allowed us to determine that Six3 is a direct negative regulator of Wnt1 expression. These results, together with those of phenotypic rescue of headless/tcf3 zebrafish mutants by mouse Six3, demonstrate that regionalization of the vertebrate forebrain involves repression of Wnt1 expression by Six3 within the anterior neuroectoderm. Furthermore, these results support the hypothesis that a Wnt signal gradient specifies posterior fates in the anterior neural plate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra , Animais , Ectoderma/fisiologia , Proteínas do Olho , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Prosencéfalo/anormalidades , Proteínas Wnt , Proteína Wnt1 , Peixe-Zebra/genética , Proteína Homeobox SIX3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA