Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 25: 104052, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31198832

RESUMO

The data presented here refer to a research article entitled "Self-Assembled Micellar Clusters Based on Triton-X-family Surfactants for Enhanced Solubilization, Encapsulation, Proteins Permeability Control, and Anticancer Drug Delivery" Solomonov et al., 2019. The present article provides the General Procedure for clusterization of Triton-X-based micelles and the effect of (i) metal ion, surfactant, and chelator concentration on the developed clusters formation, (ii) surfactant-chelator relation change, (iii) metal ion-micelles concertation ratio variation, (iv) metal ion replacement, (v) solvent replacement, (vi) kinetics of clusters formation, (vii) hydrophobic fluorescent dye (Coumarin 6) solubilization in aqueous MCs media, (viii) novel anticancer peptidyl drug synthesis and characterization and (ix) the viability of HeLa cells with and without the presence of drug-free Triton-X-based family MCs. These data provide additional insights useful for understanding all aspects of the micellar clusters formation, optimization, and control.

2.
Mater Sci Eng C Mater Biol Appl ; 99: 794-804, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889754

RESUMO

Non-ionic surfactants have raised a considerable interest for solubilization, encapsulation, permeabilization and controlled release of various compounds due to their unique physicochemical properties. Nevertheless, it is still challenging to create convenient self-assembled multifunctional materials with high solubilization and encapsulation capacities by preserving their advanced capabilities to protect loaded cargos without altering their characteristics. In this work, we present an extended concept of micellar clusters (MCs) formation based on partial entrapment and stabilization of chelate ligands by hydrophobic forces found on the non-ionic surfactant micelle interface of the Triton-X family (TX-100/TX-114), followed by subsequent complexation of the preformed structures either by metal ions or a supporting chelator. The formation aspects, inner structure and the role of external factors such as the addition of competitive ligands have been extensively studied. MCs loaded by hydrophobic fluorescent compounds with high encapsulation efficiency demonstrate an excellent optical response in aqueous media without crystallization as well as sufficient increase in solubility of toxic hydrophobic compounds such as bilirubin (>50 times compared to pure surfactants). Furthermore, Triton-X-based MCs provide a unique feature of selective permeability to hydrophilic ligand-switching proteins such as UnaG and BSA demonstrating bright "turn-on" fluorescence signal either inside the cluster or on its interface via complexation. The proposed strategies allowed us to successfully encapsulate and visualize a newly synthesized, highly hydrophobic anticancer PTR-58-CLB-CAMP peptide drug, while MCs loaded by the drug exhibit a considerable antitumor activity against HeLa cells.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Micelas , Polietilenoglicóis/química , Tensoativos/química , Quelantes/química , Eletrólitos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Íons , Ferro/análise , Cinética , Ligantes , Tamanho da Partícula , Permeabilidade , Solubilidade , Soluções , Solventes/química , Temperatura
3.
Curr Med Chem ; 24(25): 2745-2772, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28571557

RESUMO

BACKGROUND: The group of fluorophores on boron dipyrrin platform (4,4- difluoro-4-bora3a,4a-diaza-s-indacene, also known as BODIPY) has attracted much attention in the field of molecular sensorics, including sensing of biomolecules and bioprocesses. Structural diversity of existing BODIPY with ample opportunities of directed modification of compounds makes this class of fluorophores attractive for medical and biological purposes. The recent progress in the design and functionalization of BODIPY allows using them for modification of drug micro- and nanocarriers in order to improve their therapeutic effect in cancer treatment. At the same time, integration of BODIPY into drug carriers provides the possibility of in vitro and in vivo real time imaging of used drug carriers. The high fluorescent intensity and low toxicity of BODIPY granted for conjugation with different biomolecules. RESULTS: The present review focuses on the recent advances for application of individual BODIPY in medical diagnostics, antimicrobial activity, as well as establishing the role of BODIPY in labeling of biomolecules (e.g. proteins, hormones and DNA). Also the review highlights the potential of BODIPY in functionalization of drug micro- and nanocarriers in order to achieve better therapeutic efficiency compared with non-modified materials. The advantages derived from the use of BODIPY for preparation and modification of drug carriers are critically evaluated and potential for future challenges, especially concerning the design of innovative multi-functional BODIPY-based nanocarriers, is discussed in detail using representative examples from literature. CONCLUSION: Our objective was to show that BODIPY are powerful tools for bioimaging, labeling of biomolecules and construction of new multifunctional drug carriers.


Assuntos
Compostos de Boro/análise , Compostos de Boro/química , Portadores de Fármacos/análise , Portadores de Fármacos/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA