Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 62: 101087, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497728

RESUMO

Small RNAs and enzymes that provide their biogenesis and functioning are involved in the organism development and coordination of biological processes, including metabolism, maintaining genome integrity, immune and stress responses. In this review, we focused on the role of small RNA biogenesis proteins in determining the aging and longevity of animals and human. A number of studies have revealed that changes in expression profiles of key enzymes, in particular proteins of the Drosha, Dicer and Argonaute families, are associated with the aging process, as well as with some age-related diseases and progeroid syndromes. Down-regulation of small RNA biogenesis proteins leads to global alterations in the expression of regulatory RNAs, disruption of key molecular, cellular and systemic processes, which leads to a lifespan shortening. In contrast, overexpression of Dicer prolongs lifespan and improves cellular defense. Additionally, the role of small RNA biogenesis proteins in the pathogenesis of age-related diseases, including cancer, inflammaging, neurodegeneration, cardiovascular, metabolic and immune disorders, has been conclusively evidenced. Recent advances in biomedicine allow using these proteins as diagnostic and prognostic biomarkers and therapeutic targets.


Assuntos
Envelhecimento , Longevidade , Animais , Proteínas Argonautas , Humanos , MicroRNAs , RNA Mensageiro
2.
BMC Genomics ; 16 Suppl 13: S8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26694630

RESUMO

BACKGROUND: The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. RESULTS: We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. CONCLUSIONS: Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.


Assuntos
Resposta ao Choque Frio , Drosophila melanogaster/fisiologia , Radiação Ionizante , Inanição/metabolismo , Transcriptoma , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Drosophila melanogaster/efeitos da radiação , Fungos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA