Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553499

RESUMO

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Assuntos
Neutrófilos , Orthomyxoviridae , Animais , Camundongos , Neutrófilos/metabolismo , Gasderminas , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Orthomyxoviridae/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
2.
Mol Vis ; 29: 13-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287642

RESUMO

Purpose: Basigin gene products are positioned on adjacent cell types in the neural retina and are thought to compose a lactate metabolon important for photoreceptor cell function. The Ig0 domain of basigin isoform 1 (basigin-1) is highly conserved throughout evolution, which suggests a conserved function. It has been suggested that the Ig0 domain has proinflammatory properties, and it is hypothesized to interact with basigin isoform 2 (basigin-2) for cell adhesion and lactate metabolon formation. Therefore, the purpose of the present study was to determine whether the Ig0 domain of basigin-1 binds to basigin-2 and whether the region of the domain used for binding is also used to stimulate interleukin-6 (IL-6) expression. Methods: Binding was assessed using recombinant proteins corresponding to the Ig0 domain of basigin-1 and endogenously expressed basigin-2 from mouse neural retina and brain protein lysates. The proinflammatory properties of the Ig0 domain were analyzed with exposure of the recombinant proteins to the mouse monocyte RAW 264.7 cell line and subsequent measurement of the IL-6 concentration in the culture medium via enzyme-linked immunosorbent assay (ELISA). Results: The data indicate that the Ig0 domain interacts with basigin-2 through a region within the amino half of the domain and that the Ig0 domain does not stimulate the expression of IL-6 in mouse cells in vitro. Conclusions: The Ig0 domain of basigin-1 binds to basigin-2 in vitro. In addition, contrary to previous reports, there was no evidence that the Ig0 domain potentiates IL-6 expression in a mouse monocyte cell line in vitro. However, it is possible that the Ig0 domain stimulates the expression of proinflammatory cytokines other than IL-6, or that the potential involvement of the Ig0 domain of basigin-1 in the acute inflammatory response is dependent on species.


Assuntos
Basigina , Interleucina-6 , Camundongos , Animais , Basigina/química , Basigina/genética , Basigina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Monócitos , Retina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Lactatos/metabolismo
3.
J Immunol ; 209(5): 845-854, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130131

RESUMO

Retinoic acid-inducible gene I-like receptors (RLRs) are cytosolic RNA sensors critical for initiation of antiviral immunity. Activation of RLRs following RNA recognition leads to production of antiviral genes and IFNs for induction of broad antiviral immunity. Although the RLRs are ubiquitously expressed, much of our understanding of these molecules comes from their study in epithelial cells and fibroblasts. However, RLR activation is critical for induction of immune function and long-term protective immunity. Recent work has focused on the roles of RLRs in immune cells and their contribution to programming of effective immune responses. This new understanding of RLR function in immune cells and immune programming has led to the development of vaccines and therapeutics targeting the RLRs. This review covers recent advances in our understanding of the contribution of RLRs to immune cell function during infection and the emerging RLR-targeting strategies for induction of immunity against cancer and viral infection.


Assuntos
RNA Helicases DEAD-box , Transdução de Sinais , Antivirais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , RNA , Tretinoína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA