Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 330, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334237

RESUMO

BACKGROUND: The human endometrium, lining the inner uterus, regenerates over 400 times uniquely during a woman's reproductive life. Endometrial stem cells (eSCs) enrich the tissue, resulting in a dense vascular network, significant angiogenic potential, and effective regeneration power. Being of natural angiogenic properties and proven effective in the treatment of vascular disorders, eSCs can be considered safe, reliable, and superior to other post-natal stem cells. Cluster of Differentiation 146 (CD146) has emerged as a pivotal marker associated with pericytes and endothelial cells for promoting angiogenesis. Endometrial cells with high CD146 expression could proliferate and differentiate into multiple lineages. This study will explore the role of CD146 in eSCs, focusing on the potential to boost the angiogenic and regenerative functions of the cells. The novelty of this study lies in the investigation of CD146 on eSC function, which may open new possibilities for eSC-based therapy in regenerative medicine and vascular disorders. METHODS: The study involved obtaining endometrial biopsies from active reproducing women to isolate and cultivate eSCs. eSCs were assessed for growth factor secretion pattern, characterized for their mesenchymal properties. Finally, eSCs were tested for their angiogenic potential by angiogenic gene expression profile and in-ovo chick embryo model. As aimed, to check the role of CD146 in eSC angiogenesis, CD146+ cells were magnetically sorted and cultured. The sorted cells underwent various analyses, including flowcytometry to identify mesenchymal markers and human growth factor panel to analyze growth factor secretion profiles The study evaluated the angiogenic potential of CD146 + cells using functional assays, including ring formation, endothelial differentiation, and wound scratch assays, to evaluate cell migration and healing capabilities. Molecular insights were obtained through chemokine and cytokine investigations In-ovo Chick model assay was conducted to check the angiogenic potential and evaluated through macroscopic as well as through immunohistochemistry. RESULT: Endometrial stem cells (eSCs) were successfully isolated using a combination of mechanical and enzymatic digestion, followed by culturing in complete DMEM media. The secretion profile of eSCs revealed significant production of various angiogenic growth factors, including Granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGF), and Platelet derived growth factor AA (PDGF-AA). The angiogenic gene profile indicated upregulation of several angiogenic genes in eSCs. The mesenchymal nature of eSCs was demonstrated through surface marker analysis (Cluster of differentiation 73, Cluster of differentiation 90, Cluster of differentiation 105) and trilineage differentiation. The in-ovo chick model confirmed the angiogenic potential of eSCs. CD146+ cells, isolated via magnetic sorting, exhibited enhanced angiogenic potential. These cells secreted significant levels of angiogenic growth factors such as VEGF. In Matrigel assays, CD146+ cells formed endothelial ring structures more rapidly and persistently than unsorted eSCs. Semi-quantitative PCR confirmed their endothelial differentiation. CD146+ cells express various angiogenic chemokines such as CXCL5, CXCL8, CCL3, and CCL20 and cytokines such as GM-CSF, Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), PDGF AA/BB, Epidermal growth factor (EGF), Endothelin 1, Angiopoietin. In-ovo chick model assay showed that CD146+ cells had superior angiogenesis, with more nodes, junctions, and segments compared to eSCs and controls. Immunohistochemistry confirmed increased expression of endothelial markers (Cluster of differentiation 31, VEGF, Vascular associated protein (VAP), Von Willebrand factor (vWF) in CD146+ cells. CONCLUSION: The study highlights the angiogenic potential of endometrial stem cells, particularly the CD146+ cell population. These cells promote angiogenesis, secreting growth factors and forming stable blood vessel structures. CD146+ cells have higher expression levels of VEGF and TGF-α, key factors in angiogenesis. This suggests CD146+ eSCs may be promising for therapeutic applications in vascular diseases requiring angiogenesis. Further research is needed.


Assuntos
Antígeno CD146 , Endométrio , Neovascularização Fisiológica , Feminino , Antígeno CD146/metabolismo , Antígeno CD146/genética , Endométrio/metabolismo , Endométrio/citologia , Endométrio/irrigação sanguínea , Humanos , Animais , Diferenciação Celular , Células-Tronco/metabolismo , Células-Tronco/citologia , Embrião de Galinha , Células Cultivadas , Adulto
2.
J Cancer Res Ther ; 20(1): 193-198, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554320

RESUMO

BACKGROUND: CD146, a cell adhesion molecule, was first discovered in melanoma. Since then, it has been established as a promoter of tumor progression and metastasis. Many recent clinical studies have associated CD146 overexpression with poor prognosis in various cancers. However, clinical relevance of CD146 in prognosis of breast cancer has been poorly studied. METHODS: We performed meta-analysis of data of all clinical studies associated with the prognostic value of CD146 expression in breast cancer. Relevant studies were retrieved from PubMed database as per the inclusion and exclusion criteria, data were extracted independently and carefully by two reviewers with the help of standardized form, and meta-analysis was performed to correlate CD146 expression with molecular subtypes, lymph node metastasis, and overall survival in breast cancer. RESULTS: Our findings suggest that CD146 expression is predominantly found in triple-negative breast cancer subtype (pooled odds ratio = 2.98, 95% confidence interval [CI] =2.19-4.05, P < .00001) and breast tumors overexpressing CD146 have a higher risk of lymph node metastasis (pooled relative risk = 1.64, 95% CI = 1.44-1.87, P < .00001). Furthermore, high expression of CD146 was associated with poor prognosis in breast cancer (pooled hazard ratio = 1.51, 95% CI = 1.21-1.87, P = .0002). CONCLUSION: Overall results suggested that CD146 may be a potential prognostic marker to predict metastatic potential and disease outcomes in breast cancer and can be used as a therapeutic target.


Assuntos
Neoplasias da Mama , Melanoma , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/metabolismo , Prognóstico , Antígeno CD146/genética , Antígeno CD146/análise , Antígeno CD146/metabolismo , Metástase Linfática , Neoplasias de Mama Triplo Negativas/patologia
3.
Clin Pract ; 13(4): 838-852, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37489425

RESUMO

Senotherapy, a promising therapeutic strategy, has drawn a lot attention recently due to its potential for combating cancer. Senotherapy refers to the targeting of senescent cells to restore tissue homeostasis and mitigate the deleterious effects associated with senescence. Senolytic drugs represent a promising avenue in cancer treatment, with the potential to target and modulate senescent cells to improve patient outcomes. The review highlights the intricate interplay between the senescence-associated secretory phenotype (SASP) and the tumor microenvironment, emphasizing the role of senescent cells in promoting chronic inflammation, immune evasion, and tumor-cell proliferation. It then explores the potential of senotherapy as a novel strategy for cancer therapy. This review addresses the emerging evidence on the combination of senotherapy with conventional cancer treatments, such as chemotherapy and immunotherapy.

4.
Arthritis Rheumatol ; 74(6): 1027-1038, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35001552

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction, and vascular damage, in which the expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. Since CD146 also exists as a circulating soluble form (sCD146) that acts as a growth factor in numerous angiogenic- and inflammation-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and to characterize the regulation and functions of the different variants identified in SSc. METHODS: We performed in vitro experiments, including RNA-Seq and antibody arrays, and in vivo experiments using animal models of bleomycin-induced SSc and hind limb ischemia. RESULTS: Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of CD146 through ADAM-10 and TACE metalloproteinases, respectively. In addition, 2 novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146, were identified. Of interest, I5-13-sCD146 was significantly increased in the sera of SSc patients (P < 0.001; n = 117), in particular in patients with pulmonary fibrosis (P < 0.01; n = 112), whereas I10-sCD146 was decreased (P < 0.05; n = 117). Further experiments revealed that shed sCD146 and I10-sCD146 displayed proangiogenic activity through the focal adhesion kinase and protein kinase Cε signaling pathways, respectively, whereas I5-13-sCD146 displayed profibrotic effects through the Wnt-1/ß-catenin/WISP-1 pathway. CONCLUSION: Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc and other angiogenesis- or fibrosis-related disorders.


Assuntos
Antígeno CD146 , Escleroderma Sistêmico , Animais , Biomarcadores , Antígeno CD146/genética , Antígeno CD146/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055160

RESUMO

Background: Triple Negative Breast Cancers (TNBC) are the most aggressive breast cancers and lead to poor prognoses. This is due to a high resistance to therapies, mainly because of the presence of Cancer Stem Cells (CSCs). Plasticity, a feature of CSCs, is acquired through the Epithelial to Mesenchymal Transition (EMT), a process that has been recently shown to be regulated by a key molecule, CD146. Of interest, CD146 is over-expressed in TNBC. Methods: The MDA-MB-231 TNBC cell line was used as a model to study the role of CD146 and its secreted soluble form (sCD146) in the development and dissemination of TNBC using in vitro and in vivo studies. Results: High expression of CD146 in a majority of MDA-MB-231 cells leads to an increased secretion of sCD146 that up-regulates the expression of EMT and CSC markers on the cells. These effects can be blocked with a specific anti-sCD146 antibody, M2J-1 mAb. M2J-1 mAb was able to reduce tumour development and dissemination in a model of cells xenografted in nude mice and an experimental model of metastasis, respectively, in part through its effects on CSC. Conclusion: We propose that M2J-1 mAb could be used as an additional therapeutic approach to fight TNBC.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regulação para Cima , Animais , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Biochem Funct ; 39(7): 860-873, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34505714

RESUMO

Breast cancer is the most prevalent type of cancer among women globally. Angiogenesis contributes significantly to breast cancer progression and dissemination. Neovascularization is concurrent with the progression and growth of breast cancer. Breast cancer cells control angiogenesis by secreting pro-angiogenic factors like fibroblast growth factor, vascular endothelial growth factor, interleukin, transforming growth factor-ß, platelet-derived growth factor and several others. These pro-angiogenic factors trigger neovascularization, and thereby lead to breast cancer development and metastasis. The hypoxia-inducible factor (HIF)-regulated angiogenesis cascade is a crucial underlying factor in breast cancer growth and metastasis. To that end, several efforts have been made to identify druggable targets within the HIF-angiogenesis components. However, escape pathways are a major hindrance for targeted therapies against angiogenesis. Thus, understanding the key factors that trigger breast cancer angiogenesis is critical in elucidating ways to inhibit breast cancer. The current review provides an overview of the key growth factors that trigger breast cancer angiogenesis.


Assuntos
Neoplasias da Mama/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/metabolismo , Feminino , Humanos
7.
Breastfeed Med ; 12(7): 446-449, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28640669

RESUMO

PARTICIPATING AND STUDY OBJECTIVE: Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. PARTICIPANTS: A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. METHODOLOGY: Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. OUTCOME: Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. CONCLUSION: The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.


Assuntos
Aleitamento Materno , Colostro/citologia , Colostro/imunologia , Leite Humano/citologia , Leite Humano/imunologia , Nascimento Prematuro , Células-Tronco , Adulto , Moléculas de Adesão Celular , Colostro/química , Feminino , Citometria de Fluxo , Idade Gestacional , Humanos , Índia , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Lactação/imunologia , Lactação/fisiologia , Masculino , Mães , Projetos Piloto
9.
Breastfeed Med ; 11(1): 26-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26670023

RESUMO

INTRODUCTION: Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. MATERIALS AND METHODS: The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. RESULTS: The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). CONCLUSIONS: Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.


Assuntos
Extração de Leite/métodos , Fator de Crescimento de Hepatócito/metabolismo , Células-Tronco Mesenquimais/metabolismo , Leite Humano/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Aleitamento Materno , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Índia , Recém-Nascido , Células-Tronco Mesenquimais/imunologia , Leite Humano/imunologia
10.
Stem Cells Int ; 2015: 146051, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688272

RESUMO

The study aims to identify the phenotypic marker expressions of different human adult stem cells derived from, namely, bone marrow, subcutaneous fat, and omentum fat, cultured in different media, namely, DMEM-Low Glucose, Alpha-MEM, DMEM-F12 and DMEM-KO and under long term culture conditions (>P20). We characterized immunophenotype by using various hematopoietic, mesenchymal, endothelial markers, and cell adhesion molecules in the long term cultures (Passages-P1, P3, P5, P9, P12, P15, and P20.) Interestingly, data revealed similar marker expression profiles irrespective of source, basal media, and extensive culturing. This demonstrates that all adult stem cell sources mentioned in this study share similar phenotypic marker and all media seem appropriate for culturing these sources. However, a disparity was observed in the markers such as CD49d, CD54, CD117, CD29, and CD106, thereby warranting further research on these markers. Besides the aforesaid objective, it is understood from the study that immunophenotyping acts as a valuable tool to identify inherent property of each cell, thereby leading to a valuable cell based therapy.

11.
Cell Mol Biol Lett ; 18(1): 75-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23271432

RESUMO

Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.


Assuntos
Células da Medula Óssea/citologia , Transdiferenciação Celular , Ilhotas Pancreáticas/citologia , Células-Tronco Mesenquimais/citologia , Gordura Subcutânea/citologia , Adulto , Biomarcadores/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Ditizona , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Histocitoquímica , Humanos , Insulina/biossíntese , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo
12.
Cell Biol Int ; 36(11): 1029-36, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22913739

RESUMO

Recent scientific explorations in search of novel sources for autologous transplantation transpired an alternative source of MSCs (mesenchymal stem cells) derived from omentum fat. The scarcity of experimental evidences probing into the biosafety concerns of omentum fat-derived MSC under prolonged culture conditions limits its applicability as an efficient tool in regenerative medicine. This study, thus, aims to optimize human omentum fat-derived MSC in four different media [DMEM (Dulbecco's modified Eagle's medium) LG (low glucose), DMEM KO (knock out), α-MEM (α-minimal essential media) and DMEM F12] in the facets of phenotypic characterization, growth kinetics, differentiation and karyotyping under prolonged culture. The cells exhibited a similarity in expression profile for the majority of markers with evidential variations in certain markers. The relevance of omentum fat-derived MSCs became evident from its triumphant differentiation potential and karyotypic stability substantiated even at later passage. The results obtained from growth curve and PDT (population doubling time) lead to optimization of appropriate media for omentum fat-derived stem cell research, thereby bringing omentum fat into the forefront of regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Meios de Cultura/química , Células-Tronco Mesenquimais/citologia , Omento/citologia , Adulto , Antígenos de Superfície/metabolismo , Biópsia , Contagem de Células , Células Cultivadas , Cromossomos Humanos/metabolismo , Citometria de Fluxo , Glucose/metabolismo , Humanos , Imunofenotipagem , Cariótipo , Cariotipagem , Mesoderma/citologia , Mesoderma/metabolismo , Pessoa de Meia-Idade , Compostos Orgânicos/metabolismo , Fenótipo , Medicina Regenerativa/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA