Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Rep ; 14(1): 13134, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849411

RESUMO

The pandemic of coronavirus disease 19 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), had severe repercussions for breast cancer patients. Increasing evidence indicates that SARS-CoV-2 infection may directly impact breast cancer biology, but the effects of SARS-CoV-2 on breast tumor cells are still unknown. Here, we analyzed the molecular events occurring in the MCF7, MDA-MB-231 and HCC1937 breast cancer cell lines, representative of the luminal A, basal B/claudin-low and basal A subtypes, respectively, upon SARS-CoV-2 infection. Viral replication was monitored over time, and gene expression profiling was conducted. We found that MCF7 cells were the most permissive to viral replication. Treatment of MCF7 cells with Tamoxifen reduced the SARS-CoV-2 replication rate, suggesting an involvement of the estrogen receptor in sustaining virus replication in malignant cells. Interestingly, a metagene signature based on genes upregulated by SARS-CoV-2 infection in all three cell lines distinguished a subgroup of premenopausal luminal A breast cancer patients with a poor prognosis. As SARS-CoV-2 still spreads among the population, it is essential to understand the impact of SARS-CoV-2 infection on breast cancer, particularly in premenopausal patients diagnosed with the luminal A subtype, and to assess the long-term impact of COVID-19 on breast cancer outcomes.


Assuntos
Neoplasias da Mama , COVID-19 , SARS-CoV-2 , Tamoxifeno , Replicação Viral , Humanos , Neoplasias da Mama/virologia , Neoplasias da Mama/patologia , COVID-19/virologia , Feminino , SARS-CoV-2/fisiologia , Linhagem Celular Tumoral , Tamoxifeno/farmacologia , Células MCF-7 , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
2.
PLoS One ; 19(5): e0303875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776331

RESUMO

BACKGROUND: It is amply demonstrated that cigarette smoke (CS) has a high impact on lung tumor progression worsening lung cancer patient prognosis and response to therapies. Alteration of immune cell types and functions in smokers' lungs have been strictly related with smoke detrimental effects. However, the role of CS in dictating an inflammatory or immunosuppressive lung microenvironment still needs to be elucidated. Here, we investigated the effect of in vitro exposure to cigarette smoke extract (CSE) focusing on macrophages. METHODS: Immortalized murine macrophages RAW 264.7 cells were cultured in the presence of CS extract and their polarization has been assessed by Real-time PCR and cytofluorimetric analysis, viability has been assessed by SRB assay and 3D-cultures and activation by exposure to Poly(I:C). Moreover, interaction with Lewis lung carcinoma (LLC1) murine cell models in the presence of CS extract were analyzed by confocal microscopy. RESULTS: Obtained results indicate that CS induces macrophages polarization towards the M2 phenotype and M2-phenotype macrophages are resistant to the CS toxic activity. Moreover, CS impairs TLR3-mediated M2-M1 phenotype shift thus contributing to the M2 enrichment in lung smokers. CONCLUSIONS: These findings indicate that, in lung cancer microenvironment of smokers, CS can contribute to the M2-phenotype macrophages prevalence by different mechanisms, ultimately, driving an anti-inflammatory, likely immunosuppressive, microenvironment in lung cancer smokers.


Assuntos
Neoplasias Pulmonares , Macrófagos , Microambiente Tumoral , Animais , Camundongos , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Fumaça/efeitos adversos , Polaridade Celular/efeitos dos fármacos , Humanos , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/imunologia
3.
Cells ; 13(2)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247872

RESUMO

Melanoma is characterized by high metastatic potential favored by the epithelial-to-mesenchymal transition (EMT), leading melanoma cells to exhibit a spectrum of typical EMT markers. This study aimed to analyze the expression of EMT markers in A375 and BLM melanoma cell lines cultured in 2D monolayers and 3D spheroids using morphological and molecular methods. The expression of EMT markers was strongly affected by 3D arrangement and revealed a hybrid phenotype for the two cell lines. Indeed, although E-cadherin was almost undetectable in both A375 and BLM cells, cortical actin was detected in A375 2D monolayers and 3D spheroids and was strongly expressed in BLM 3D spheroids. The mesenchymal marker N-cadherin was significantly up-regulated in A375 3D spheroids while undetectable in BLM cells, but vimentin was similarly expressed in both cell lines at the gene and protein levels. This pattern suggests that A375 cells exhibit a more undifferentiated/mesenchymal phenotype, while BLM cells have more melanocytic/differentiated characteristics. Accordingly, the Zeb1 and 2, Slug, Snail and Twist gene expression analyses showed that they were differentially expressed in 2D monolayers compared to 3D spheroids, supporting this view. Furthermore, A375 cells are characterized by a greater invasive potential, strongly influenced by 3D arrangement, compared to the BLM cell line, as evaluated by SDS-zymography and TIMPs gene expression analysis. Finally, TGF-ß1, a master controller of EMT, and lysyl oxidase (LOX), involved in melanoma progression, were strongly up-regulated by 3D arrangement in the metastatic BLM cells alone, likely playing a role in the metastatic phases of melanoma progression. Overall, these findings suggest that A375 and BLM cells possess a hybrid/intermediate phenotype in relation to the expression of EMT markers. The former is characterized by a more mesenchymal/undifferentiated phenotype, while the latter shows a more melanocytic/differentiated phenotype. Our results contribute to the characterization of the role of EMT in melanoma cells and confirm that a 3D cell culture model could provide deeper insight into our understanding of the biology of melanoma.


Assuntos
Melanoma , Humanos , Melanoma/genética , Diferenciação Celular , Transição Epitelial-Mesenquimal/genética , Técnicas de Cultura de Células em Três Dimensões , Fenótipo
4.
Cells ; 12(15)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566024

RESUMO

Emerging evidence suggests a profound association between the microbiota composition in the gastrointestinal tract and breast cancer progression. The gut microbiota plays a crucial role in modulating the immune response, releasing metabolites, and modulating estrogen levels, all of which have implications for breast cancer growth. However, recent research has unveiled a novel aspect of the relationship between the microbiota and breast cancer, focusing on microbes residing within the mammary tissue, which was once considered sterile. These localized microbial communities have been found to change in the presence of a tumor as compared to healthy mammary tissue, unraveling their potential contribution to tumor progression. Studies have identified specific bacterial species that are enriched within breast tumors and have highlighted the mechanisms by which even these microbes influence cancer progression through immune modulation, direct carcinogenic activity, and effects on cellular pathways involved in cell proliferation or apoptosis. This review aims to provide an overview of the current knowledge on the mechanisms of crosstalk between the gut/mammary microbiota and breast cancer. Understanding this intricate interplay holds promise for developing innovative therapeutic approaches.


Assuntos
Neoplasias da Mama , Mama , Microbioma Gastrointestinal , Animais , Humanos , Mama/microbiologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Imunidade , Simbiose , Interações entre Hospedeiro e Microrganismos
5.
Cancer Lett ; 555: 216041, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36565918

RESUMO

The mammary gland hosts a microbiota, which differs between malignant versus normal tissue. We found that aerosolized antibiotics decrease murine mammary tumor growth and strongly limit lung metastasis. Oral absorbable antibiotics also reduced mammary tumors. In ampicillin-treated nodules, the immune microenvironment consisted of an M1 profile and improved T cell/macrophage infiltration. In these tumors, we noted an under-representation of microbial recognition and complement pathways, supported by TLR2/TLR7 protein and C3-fragment deposition reduction. By 16S rRNA gene profiling, we observed increased Staphylococcus levels in untreated tumors, among which we isolated Staphylococcus epidermidis, which had potent inflammatory activity and increased Tregs. Conversely, oral ampicillin lowered Staphylococcus epidermidis in mammary tumors and expanded bacteria promoting an M1 phenotype and reducing MDSCs and tumor growth. Ampicillin/paclitaxel combination improved the chemotherapeutic efficacy. Notably, an Amp-like signature, based on genes differentially expressed in murine tumors, identified breast cancer patients with better prognosis and high immune infiltration that correlated with a bacteria response signature. This study highlights the significant influence of mammary tumor microbiota on local immune status and the relevance of its treatment with antibiotics, in combination with breast cancer therapies.


Assuntos
Neoplasias Mamárias Animais , Staphylococcus epidermidis , Camundongos , Animais , RNA Ribossômico 16S/genética , Ampicilina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microambiente Tumoral
6.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555441

RESUMO

Hyperprogressive disease (HPD), an aggressive acceleration of tumor growth, was observed in a group of cancer patients treated with anti-PD1/PDL1 antibodies. The presence of a peculiar macrophage subset in the tumor microenvironment is reported to be a sort of "immunological prerequisite" for HPD development. These macrophages possess a unique phenotype that it is not clear how they acquire. We hypothesized that certain malignant cells may promote the induction of an "HPD-related" phenotype in macrophages. Bone-marrow-derived macrophages were exposed to the conditioned medium of five non-small cell lung cancer cell lines. Macrophage phenotype was analyzed by microarray gene expression profile and real-time PCR. We found that human NSCLC cell lines, reported as undergoing HPD-like tumor growth in immunodeficient mice, polarized macrophages towards a peculiar pro-inflammatory phenotype sharing both M1 and M2 features. Lipid-based factors contained in cancer cell-conditioned medium induced the over-expression of several pro-inflammatory cytokines and the activation of innate immune receptor signaling pathways. We also determined that tumor-derived Extracellular Vesicles represent the main components involved in the observed macrophage re-education program. The present study might represent the starting point for the future development of diagnostic tools to identify potential hyperprogressors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Macrófagos/metabolismo , Fenótipo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
7.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361537

RESUMO

An immunosuppressive microenvironment in lung concurs to pre-malignant lesions progression to cancer. Here, we explore if perturbing lung microbiota, which contribute to immunosuppression, by antibiotics or probiotic aerosol interferes with lung cancer development in a mouse carcinogen-induced tumor model. Urethane-injected mice were vancomycin/neomycin (V/N)-aerosolized or live or dead L. rhamnosus GG (L.RGG)-aerosolized, and tumor development was evaluated. Transcriptional profiling of lungs and IHC were performed. Tumor nodules number, diameter and area were reduced by live or heat-killed L.RGG, while only a decrease in nodule diameter was observed in V/N-treated lungs. Both L.RGG and V/N reduced Tregs in the lung. In L.RGG-treated groups, the gene encoding the joining chain (J chain) of immunoglobulins was increased, and higher J chain protein and IgA levels were observed. An increased infiltration of B, NK and myeloid-derived cells was predicted by TIMER 2.0. The Kaplan-Meier plotter revealed an association between high levels of J chain mRNA and good prognosis in lung adenocarcinoma patients that correlated with increased B and CD4 T cells and reduced Tregs and M2 macrophages. This study highlights L.RGG aerosol efficacy in impairing lung cancer growth by promoting local immunity and points to this non-invasive strategy to treat individuals at risk of lung cancer.


Assuntos
Adenoma , Lacticaseibacillus rhamnosus , Neoplasias Pulmonares , Probióticos , Camundongos , Animais , Carcinógenos , Temperatura Alta , Neoplasias Pulmonares/patologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Modelos Animais de Doenças , Microambiente Tumoral
8.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884452

RESUMO

BACKGROUND: It is now well-established that cancer stem cells (CSCs) can support melanoma progression by reshaping the tumor immune microenvironment. However, the molecular mechanisms underlying the crosstalk between melanoma SCs and cancer-associated neutrophils have not been elucidated yet. METHODS: The aim of the present study was to unravel the role of melanoma SCs in neutrophil polarization. HL60 neutrophil-like (dHL60) cells were treated with conditioned medium from A375 melanoma SCs (CSC-CM), and their phenotype was investigated. RESULTS: We demonstrated that CSC-CM could specifically activate immune cells by increasing CD66b and CD11b expression. In particular, we revealed that A375 CSCs could release various soluble factors, namely TGF-ß, IL-6, and IL-8, able to promote the recruitment of neutrophils and their switch toward an N2 phenotype characterized by the activation of ERK, STAT3, and P38 pathways and the overexpression of CXCR2 and NF-kB. Moreover, after exposure to CSC-CM, dHL60 cells exhibited enhanced ROS production and NET release, without undergoing cell death; increased secretion of MMP-9 and pro-inflammatory cytokines was also observed. Finally, CSC-CM-activated neutrophils endowed A375 cells with stemness traits, stimulating both sphere formation and ABCG2 expression. CONCLUSION: Collectively, our results suggest that melanoma SCs can prime neutrophils to support cancer progression.

9.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455997

RESUMO

E-cadherin, an epithelial-to-mesenchymal transition (EMT) marker, is coupled to actin cytoskeleton and distributes cell forces acting on cells. Since YAP transduces mechanical signals involving actin cytoskeleton, we aimed to investigate the relationship between YAP and mechanical cues in pancreatic ductal adenocarcinoma (PDAC) cell lines, characterized by different EMT-related phenotypes, cultured in 2D monolayers and 3D spheroids. We observed that the YAP/p-YAP ratio was reduced in HPAC and MIA PaCa-2 cell lines and remained unchanged in BxPC-3 cells when cultured in a 3D setting. CTGF and CYR61 gene expression were down-regulated in all PDAC 3D compared to 2D cultures, without any significant effect following actin cytoskeleton inhibition by Cytochalasin B (CyB) treatment. Moreover, LATS1 mRNA, indicating the activation of the Hippo pathway, was not influenced by CyB and differed in all PDAC cell lines having different EMT-related phenotype but a similar pattern of CTGF and CYR61 expression. Although the role of YAP modulation in response to mechanical cues in cancer cells remains to be completely elucidated, our results suggest that cell arrangement and phenotype can determine variable outcomes to mechanical stimuli in PDAC cells. Moreover, it is possible to speculate that YAP and Hippo pathways may act as parallel and not exclusive inputs that, converging at some points, may impact cell behavior.


Assuntos
Caderinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antígenos CD , Caderinas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
10.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409421

RESUMO

In the novel pandemic of Coronavirus Disease 2019, high levels of pro-inflammatory cytokines lead to endothelial activation and dysfunction, promoting a pro-coagulative state, thrombotic events, and microvasculature injuries. The aim of the present work was to investigate the effect of SARS-CoV-2 on pro-inflammatory cytokines, tissue factor, and chemokine release, with Human Microvascular Endothelial Cells (HMEC-1). ACE2 receptor expression was evaluated by western blot analysis. SARS-CoV-2 infection was assessed by one-step RT-PCR until 7 days post-infection (p.i.), and by Transmission Electron Microscopy (TEM). IL-6, TNF-α, IL-8, IFN-α, and hTF mRNA expression levels were detected by RT-PCR, while cytokine release was evaluated by ELISA. HMEC-1 expressed ACE2 receptor and SARS-CoV-2 infection showed a constant viral load. TEM analysis showed virions localized in the cytoplasm. Expression of IL-6 at 24 h and IFN-α mRNA at 24 h and 48 h p.i. was higher in infected than uninfected HMEC-1 (p < 0.05). IL-6 levels were significantly higher in supernatants from infected HMEC-1 (p < 0.001) at 24 h, 48 h, and 72 h p.i., while IL-8 levels were significantly lower at 24 h p.i. (p < 0.001). These data indicate that in vitro microvascular endothelial cells are susceptible to SARS-CoV-2 infection but slightly contribute to viral amplification. However, SARS-CoV-2 infection might trigger the increase of pro-inflammatory mediators.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2
11.
Front Cell Dev Biol ; 9: 732192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604233

RESUMO

The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.

12.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439233

RESUMO

BACKGROUND: A combination of TLR9 agonists and an anti-PD-1 antibody has been reported to be effective in immunocompetent mice but the role of innate immunity has not yet been completely elucidated. Therefore, we investigated the contribution of the innate immune system to this combinatorial immunotherapeutic regimens using an immunodeficient mouse model in which the effector functions of innate immunity can clearly emerge without any interference from T lymphocytes. METHODS: Athymic mice xenografted with IGROV-1 human ovarian cells, reported to be sensitive to TLR9 agonist therapy, were treated with cytosine-guanine (CpG)-oligodeoxynucleotides (ODNs), an anti-PD-1 antibody or their combination. RESULTS: We found that PD-1 blockade dampened CpG-ODN antitumor activity. In vitro studies indicated that the interaction between the anti-PD-1 antibody fragment crystallizable (Fc) domain and macrophage Fc receptors caused these immune cells to acquire an immunoregulatory phenotype, contributing to a decrease in the efficacy of CpG-ODNs. Accordingly, in vivo macrophage depletion abrogated the detrimental effect exerted by the anti-PD-1 antibody. CONCLUSION: Our data suggest that if TLR signaling is active in macrophages, coadministration of an anti-PD-1 antibody can reprogram these immune cells towards a polarization state able to negatively affect the immune response and eventually promote tumor growth.

13.
Cancers (Basel) ; 13(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199324

RESUMO

It is now well established that the tumor microenvironment plays a key role in determining cancer growth, metastasis and drug resistance. Thus, it is fundamental to understand how cancer cells interact and communicate with their stroma and how this crosstalk regulates disease initiation and progression. In this setting, 3D cell cultures have gained a lot of interest in the last two decades, due to their ability to better recapitulate the complexity of tumor microenvironment and therefore to bridge the gap between 2D monolayers and animal models. Herein, we present an overview of the 3D systems commonly used for studying tumor-stroma interactions, with a focus on recent advances in cancer modeling and drug discovery and testing.

14.
PLoS One ; 16(3): e0248789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780475

RESUMO

BACKGROUND: 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] plays a role in calcium homeostasis but can also exert immunomodulatory effects. In lungs, characterized by a particular immunosuppressive environment primarily due to the presence of alveolar macrophages (AM), 1,25(OH)2D3 has been shown to favor the immune response against pathogens. Here, we explored the ability of aerosolized 1,25(OH)2D3 to locally promote an anti-tumor phenotype in alveolar macrophages (AM) in the treatment of lung metastases. METHODS: Cytotoxicity assay has been used to assess the capability of AM, in vitro treated of not with 1,25(OH)2D3, to stimulate NK cells. Sulforhodamine B (SRB) assay has been used to assess the effect of 1,25(OH)2D3 on MC-38 and B16 tumor cells in vitro growth. 1,25(OH)2D3 was aerosolized in immunocompetent mouse models to evaluate the effect of local administration of 1,25(OH)2D3 on in vivo growth of MC-38 and B16 tumor cells within lungs and on infiltrating immune cells. RESULTS: In vitro incubation of naïve AM with 1,25(OH)2D3 improved their ability to stimulate NK cell cytotoxicity. In vivo aerosolized 1,25(OH)2D3 significantly reduced the metastatic growth of MC-38 colon carcinoma, a tumor histotype that frequently metastasizes to lung in human. Immune infiltrate obtained from digested lungs of 1,25(OH)2D3-treated mice bearing MC-38 metastases revealed an increased expression of MHCII and CD80 on AM and an up-modulation of CD69 expression on effector cells that paralleled a strong increased ability of these cells to kill MC-38 tumor in vitro. CONCLUSIONS: Together, these data show that aerosol delivery can represent a feasible and novel approach to supplement 1,25(OH)2D3 directly to the lungs promoting the activation of local immunity against cancer.


Assuntos
Aerossóis/farmacologia , Suplementos Nutricionais , Imunidade Inata/efeitos dos fármacos , Neoplasias/imunologia , Vitamina D/análogos & derivados , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Vitamina D/farmacologia
15.
Life Sci ; 264: 118618, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141040

RESUMO

AIMS: Obesity represents a global health problem. Excessive caloric intake promotes the release of inflammatory mediators by hypertrophic adipocytes and obesity-induced inflammation is now recognized as a risk factor for the development of several diseases, such as cardiovascular diseases, insulin resistance, type-II diabetes, liver steatosis and cancer. Since obesity causes inflammation, we tested the ability of acetylsalicylic acid (ASA), a potent anti-inflammatory drug, in counteracting this inflammatory process and in mitigating obesity-associated health complications. MAIN METHODS: Mice were fed with standard (SD) or high fat diet (HFD) for 3 months and then treated with acetylsalicylic acid for the subsequent two months. We then analyzed the metabolic and inflammatory status of their adipose and liver tissue by histological, molecular and biochemical analysis. KEY FINDINGS: Although ASA did not exert any effect on body weight, quantification of adipocyte size revealed that the drug slightly reduced adipocyte hypertrophy, however not sufficient so as to induce weight loss. Most importantly, ASA was able to improve insulin resistance. Gene expression profiles of pro- and anti-inflammatory cytokines as well as the expression of macrophage and lymphocyte markers revealed that HFD led to a marked macrophage accumulation in the adipose tissue and an increase of several pro-inflammatory cytokines, a situation almost completely reverted after ASA administration. In addition, liver steatosis caused by HFD was completely abrogated by ASA treatment. SIGNIFICANCE: ASA can efficiently ameliorate pathological conditions usually associated with obesity by inhibiting the inflammatory process occurring in the adipose tissue.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Obesidade/tratamento farmacológico , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Resultado do Tratamento
16.
J Exp Clin Cancer Res ; 39(1): 236, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168050

RESUMO

Immune checkpoint inhibitors (ICIs) have made a breakthrough in the treatment of different types of tumors, leading to improvement in survival, even in patients with advanced cancers. Despite the good clinical results, a certain percentage of patients do not respond to this kind of immunotherapy. In addition, in a fraction of nonresponder patients, which can vary from 4 to 29% according to different studies, a paradoxical boost in tumor growth after ICI administration was observed: a completely unpredictable novel pattern of cancer progression defined as hyperprogressive disease. Since this clinical phenomenon has only been recently described, a universally accepted clinical definition is lacking, and major efforts have been made to uncover the biological bases underlying hyperprogressive disease. The lines of research pursued so far have focused their attention on the study of the immune tumor microenvironment or on the analysis of intrinsic genomic characteristics of cancer cells producing data that allowed us to formulate several hypotheses to explain this detrimental effect related to ICI therapy. The aim of this review is to summarize the most important works that, to date, provide important insights that are useful in understanding the mechanistic causes of hyperprogressive disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/patologia
17.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948069

RESUMO

In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.


Assuntos
Adenocarcinoma/patologia , Androgênios , Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Hormônio-Dependentes/patologia , Neoplasias da Próstata/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Animais , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células/instrumentação , Hipóxia Celular , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Metabolismo Energético , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Humanos , Inflamação , Masculino , Terapia de Alvo Molecular , Monitorização Imunológica , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/tratamento farmacológico , Oxirredução , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Esferoides Celulares/efeitos dos fármacos , Terapias em Estudo , Células Tumorais Cultivadas
18.
Cells ; 9(4)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331358

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.


Assuntos
Adenocarcinoma/metabolismo , Caderinas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas/metabolismo , Animais , Matriz Extracelular/metabolismo , Humanos , Neoplasias Pancreáticas
19.
Cell Mol Life Sci ; 77(14): 2739-2749, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31974656

RESUMO

Like other body districts, lungs present a complex bacteria community. An emerging function of lung microbiota is to promote and maintain a state of immune tolerance, to prevent uncontrolled and not desirable inflammatory response caused by inhalation of harmless environmental stimuli. This effect is mediated by a continuous dialog between commensal bacteria and immune cells resident in lungs, which express a repertoire of sensors able to detect microorganisms. The same receptors are also involved in the recognition of pathogens and in mounting a proper immune response. Due to its important role in preserving lung homeostasis, the lung microbiota can be also considered a mirror of lung health status. Indeed, several studies indicate that lung bacterial composition drastically changes during the occurrence of pulmonary pathologies, such as lung cancer, and the available data suggest that the modifications of lung microbiota can be part of the etiology of tumors in lungs and can influence their progression and response to therapy. These results provide the scientific rationale to analyze lung microbiota composition as biomarker for lung cancer and to consider lung microbiota a new potential target for therapeutic intervention to reprogram the antitumor immune microenvironment. In the present review, we discussed about the role of lung microbiota in lung physiology and summarized the most relevant data about the relationship between lung microbiota and cancer.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Microbiota/imunologia , Neoplasias/imunologia , Animais , Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Tolerância Imunológica/imunologia , Inflamação/genética , Pulmão/microbiologia , Pulmão/patologia , Neoplasias/genética , Neoplasias/microbiologia , Neoplasias/terapia , Simbiose/imunologia , Microambiente Tumoral/imunologia
20.
Cancers (Basel) ; 11(7)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323788

RESUMO

Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancers. In spite of initial good response to chemotherapy, the prognosis of TNBC remains poor and no effective specific targeted therapy is readily available. Recently, we demonstrated the ability of U94, the latency gene of human herpes virus 6 (HHV-6), to interfere with proliferation and with crucial steps of the metastatic cascade by using MDA-MB 231 TNBC breast cancer cell line. U94 expression was also associated with a partial mesenchymal-to-epithelial transition (MET) of cells, which displayed a less aggressive phenotype. In this study, we show the ability of U94 to exert its anticancer activity on three different TNBC cell lines by inhibiting DNA damage repair genes, cell cycle and eventually leading to cell death following activation of the intrinsic apoptotic pathway. Interestingly, we found that U94 acted synergistically with DNA-damaging drugs. Overall, we provide evidence that U94 is able to combat tumor cells with different mechanisms, thus attesting for the great potential of this molecule as a multi-target drug in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA