Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915718

RESUMO

Background: The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results: Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion: We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.

2.
Food Chem ; 448: 139157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569411

RESUMO

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Assuntos
Helicobacter pylori , Interleucina-17 , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Paladar , Digestão , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/imunologia , Linhagem Celular
3.
ACS Omega ; 8(31): 28543-28552, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576644

RESUMO

Inhibitors of the tyrosine kinase (TK) activity of the epidermal growth factor receptor (EGFR) are routinely used in cancer therapy. However, there is a need to discover a new TK inhibitor. This study evaluated extracts from Brucea javanica and its components for their potential as novel EGFR-TK inhibitors. The cytotoxic effect of a g aqueous extract and its fractions was assessed by MTT assays with A549 lung cancer cells. The two fractions with the highest cytotoxicity were analyzed by LC/MS and 1H NMR. Brusatol was identified as the main constituent of these fractions, and its cytotoxic and pro-apoptotic activities were confirmed in A549 cells. To elucidate the inhibitory activity of brusatol against EGFR-TK, a specific ADP-GloTM kinase assay was used. In this assay, the IC50 value for EGFR-TK inhibition was 333.1 nM. Molecular dynamic simulations and docking experiments were performed to identify the binding pocket of brusatol to be located in the intracellular TK-domain of EGFR. This study demonstrates that brusatol inhibits EGFR-TK and therefore harbors a potential as a new therapeutic drug for the therapy of EGFR-depending cancers.

4.
J Agric Food Chem ; 71(13): 5314-5325, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943188

RESUMO

Human gingival fibroblast cells (HGF-1 cells) present an important cell model to investigate the gingiva's response to inflammatory stimuli such as lipopolysaccharides from Porphyromonas gingivalis (Pg-LPS). Recently, we demonstrated trans-resveratrol to repress the Pg-LPS evoked release of the pro-inflammatory cytokine interleukin-6 (IL-6) via involvement of bitter taste sensing receptor TAS2R50 in HGF-1 cells. Since HGF-1 cells express most of the known 25 TAS2Rs, we hypothesized an association between a compound's bitter taste threshold and its repressing effect on the Pg-LPS evoked IL-6 release by HGF-1 cells. To verify our hypothesis, 11 compounds were selected from the chemical bitter space and subjected to the HGF-1 cell assay, spanning a concentration range between 0.1 µM and 50 mM. In the first set of experiments, the specific role of TAS2R50 was excluded by results from structurally diverse TAS2R agonists and antagonists and by means of a molecular docking approach. In the second set of experiments, the HGF-1 cell response was used to establish a linear association between a compound's effective concentration to repress the Pg-LPS evoked IL-6 release by 25% and its bitter taste threshold concentration published in the literature. The Pearson correlation coefficient revealed for this linear association was R2 = 0.60 (p < 0.01), exceeding respective data for the test compounds from a well-established native cell model, the HGT-1 cells, with R2 = 0.153 (p = 0.263). In conclusion, we provide a predictive model for bitter tasting compounds with a potential to act as anti-inflammatory substances.


Assuntos
Limiar Gustativo , Paladar , Humanos , Interleucina-6/genética , Interleucina-6/farmacologia , Gengiva , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Porphyromonas gingivalis , Fibroblastos , Receptores Acoplados a Proteínas G/genética
5.
FASEB J ; 36(11): e22534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183361

RESUMO

The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Prótons , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
6.
J Agric Food Chem ; 70(37): 11591-11602, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36054030

RESUMO

Eating satiating, protein-rich foods is one of the key aspects of modern diet, although a bitter off-taste often limits the application of some proteins and protein hydrolysates, especially in processed foods. Previous studies of our group demonstrated that bitter-tasting food constituents, such as caffeine, stimulate mechanisms of gastric acid secretion as a signal of gastric satiation and a key process of gastric protein digestion via activation of bitter taste receptors (TAS2Rs). Here, we tried to elucidate whether dietary non-bitter-tasting casein is intra-gastrically degraded into bitter peptides that stimulate mechanisms of gastric acid secretion in physiologically achievable concentrations. An in vitro model of gastric digestion was verified by casein-fed pigs, and the peptides resulting from gastric digestion were identified by liquid chromatography-time-of-flight-mass spectrometry. The bitterness of five selected casein-derived peptides was validated by sensory analyses and by an in vitro screening approach based on human gastric parietal cells (HGT-1). For three of these peptides (YFYPEL, VAPFPEVF, and YQEPVLGPVRGPFPIIV), an upregulation of gene expression of TAS2R16 and TAS2R38 was observed. The functional involvement of these TAS2Rs was verified by siRNA knock-down (kd) experiments in HGT-1 cells. This resulted in a reduction of the mean proton secretion promoted by the peptides by up to 86.3 ± 9.9% for TAS2R16kd (p < 0.0001) cells and by up to 62.8 ± 7.0% for TAS2R38kd (p < 0.0001) cells compared with mock-transfected cells.


Assuntos
Caseínas , Paladar , Animais , Cafeína/metabolismo , Caseínas/metabolismo , Digestão , Ácido Gástrico/metabolismo , Humanos , Peptídeos/metabolismo , Hidrolisados de Proteína/metabolismo , Prótons , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Suínos , Paladar/genética
7.
J Agric Food Chem ; 70(21): 6503-6518, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593506

RESUMO

Soy sauce, one of the most common Asian fermented foods, exhibits a distinctive savory taste profile. In the present study, targeted quantitation of literature-known taste compounds, calculation of dose-over-threshold factors, and taste re-engineering experiments enabled the identification of 34 key tastants. Following the sensoproteomics approach, 14 umami-, kokumi-, and salt-enhancing peptides were identified for the first time, with intrinsic taste threshold concentrations in the range of 166-939 µmol/L and taste-modulating threshold concentrations ranging from 42 to 420 µmol/L. The lowest taste-modulating threshold concentrations were found for the leucyl peptide LDYY with an umami- and salt-enhancing threshold of 42 µmol/L. Addition of the 14 newly identified peptides to the taste recombinate (aRecDipeptides) increased the overall taste intensity and mouthfulness of the recombinate, and comparison with the authentic soy sauce confirmed the identification of all key tastants. Finally, these data as well as the quantitative profiling of several (non)-fermented foods highlight the importance of fermentation with respect to taste formation. On the basis of this knowledge, microorganisms with specific digestion patterns may be used to tailor the taste profile and especially the salt taste sensation of soy sauces.


Assuntos
Alimentos Fermentados , Alimentos de Soja , Fermentação , Peptídeos/química , Cloreto de Sódio na Dieta , Paladar
8.
Cancers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885005

RESUMO

BACKGROUND: Since it is known that bitter taste receptors (TAS2Rs) are expressed and functionally active in various extra-oral cells, their genetic variability and functional response initiated by their activation have become of broader interest, including in the context of cancer. METHODS: A systematic research was performed in PubMed and Google Scholar to identify relevant publications concerning the role of TAS2Rs in cancer. RESULTS: While the findings on variations of TAS2R genotypes and phenotypes and their association to the risk of developing cancer are still inconclusive, gene expression analyses revealed that TAS2Rs are expressed and some of them are predominately downregulated in cancerous compared to non-cancerous cell lines and tissue samples. Additionally, receptor-specific, agonist-mediated activation induced various anti-cancer effects, such as decreased cell proliferation, migration, and invasion, as well as increased apoptosis. Furthermore, the overexpression of TAS2Rs resulted in a decreased tumour incidence in an in vivo study and TAS2R activation could even enhance the therapeutic effect of chemotherapeutics in vitro. Finally, higher expression levels of TAS2Rs in primary cancerous cells and tissues were associated with an improved prognosis in humans. CONCLUSION: Since current evidence demonstrates a functional role of TAS2Rs in carcinogenesis, further studies should exploit their potential as (co-)targets of chemotherapeutics.

9.
J Agric Food Chem ; 69(36): 10550-10561, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460245

RESUMO

Red wine is rich in phenolic compounds, which chiefly determine its characteristic taste. One of its major phenolic acid constituents for which an astringency, yet no clear contribution to bitter taste has been reported, is gallic acid (GA). In previous studies, we have demonstrated bitter-tasting constituents to regulate cellular proton secretion (PS) as a key mechanism of gastric acid secretion via activation of bitter taste sensing receptors (TAS2Rs). Here, we hypothesized a contributing role of GA to the red wine-stimulated effect on PS in human gastric tumor cells (HGT-1 cells). Sensory analyses revealed that 10 µM GA as the lowest concentration tested more bitter than tap water, with increasing bitter ratings up to 1000 µM. In HGT-1 cells, the concentration of 10 µM GA evoked the most pronounced effect on PS secretion, either when added to cells as in-water solution or when spiked to a red wine matrix. GA-spiking of Zweigelt and Blaufränkisch red wine samples up to a concentration of 10 µM resulted in an equally stimulated PS, whereas the non-GA-spiked wine samples demonstrated contrary effects on PS, indicating a functional role of GA on PS. Involvement of TAS2R4 in the GA-induced PS was verified by means of an HGT-1 homozygote CRISPR-Cas9 TAS2R4 knockout approach. Moreover, gene expression analyses revealed GA to increase TAS2R4. These results demonstrate a functional role of TAS2R4 in GA-evoked PS as a key mechanism of gastric acid secretion aiding digestion. Moreover, our data provide mechanistic insights, which will help to produce stomach-friendly red wines.


Assuntos
Paladar , Vinho , Adstringentes , Digestão , Ácido Gálico/farmacologia , Ácido Gástrico , Humanos , Vinho/análise
10.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070942

RESUMO

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Assuntos
Arginina/farmacologia , Ácido Gástrico/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Prótons , Serotonina/biossíntese , Linhagem Celular Tumoral , Fenclonina/farmacologia , Expressão Gênica , Granisetron/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células Parietais Gástricas/citologia , Células Parietais Gástricas/metabolismo , Inibidores de Proteases/farmacologia , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Estômago/citologia , Estômago/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/antagonistas & inibidores , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
11.
J Nutr Biochem ; 96: 108781, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34022385

RESUMO

Our previous study indicated increased levels of taurine-conjugated bile acids (BA) in the intestine content of mice submitted to caloric restriction (CR). In the current project, we found increased levels of free taurine and taurine conjugates, including glutathione (GSH)-taurine, in CR compared to ad libitum fed animals in the mucosa along the intestine but not in the liver. The levels of free GSH were decreased in the intestine of CR compared to ad libitum fed mice. However, the levels of oxidized GSH were not affected and were complemented by the lack of changes in the antioxidative parameters. Glutathione-S transferases (GST) enzymatic activity was increased as was the expression of GST genes along the gastrointestinal tract of CR mice. In the CR intestine, addition of GSH to taurine solution enhanced taurine uptake. Accordingly, the expression of taurine transporter (TauT) was increased in the ileum of CR animals and the levels of free and BA-conjugated taurine were lower in the feces of CR compared to ad libitum fed mice. Fittingly, BA- and GSH-conjugated taurine levels were increased in the plasma of CR mice, however, free taurine remained unaffected. We conclude that CR-triggered production and release of taurine-conjugated BA in the intestine results in increased levels of free taurine what stimulates GST to conjugate and enhance uptake of taurine from the intestine.


Assuntos
Restrição Calórica , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Taurina/metabolismo , Animais , Transporte Biológico , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL
12.
J Agric Food Chem ; 69(45): 13339-13349, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33461297

RESUMO

Recent data have shown anti-inflammatory effects for trans-resveratrol (RSV) and rosmarinic acid (RA) in various immune-competent cell models through reduction of lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release. Because both compounds have been reported to taste bitter, we hypothesized an involvement of human bitter taste sensing receptors (TAS2Rs) on IL-6 release in LPS-treated human gingival fibroblasts (HGF-1). First, the bitter taste intensity of RSV and RA was compared in a sensory trial with 10 untrained panelists, of whom 90% rated a 50 ppm of RSV in water solution more bitter than 50 ppm of RA. A mean 19 ± 6% reduction of the RSV-induced bitter taste intensity was achieved by co-administration of 50 ppm of the bitter-masking, TAS2R43 antagonist homoeriodictyol (HED). Mechanistic experiments in a stably CRISPR-Cas9-edited TAS2R43ko gastric cell model revealed involvement of TAS2R43 in the HED-evoked effect on RSV-induced proton secretion, whereas the cellular response to RSV did not depend upon TAS2R43. Next, the IL-6 modulatory effect of 100 µM RSV was studied in LPS-treated immune-competent HGF-1 cells. After 6 h of treatment, RSV reduced the LPS-induced IL-6 gene expression and protein release by -46.2 ± 12.7 and -73.9 ± 2.99%, respectively. This RSV-evoked effect was abolished by co-administration of HED. Because real-time quantitative polymerase chain reaction analyses revealed a regulation of TAS2R50 in RSV with or without HED-treated HGF-1 cells, an siRNA knockdown approach of TAS2R50 was applied to verify TAS2R50 involvement in the RSV-induced reduction of the LPS-evoked IL-6 release in HGT-1 cells.


Assuntos
Interleucina-6 , Receptores Acoplados a Proteínas G/fisiologia , Resveratrol , Paladar , Anti-Inflamatórios , Fibroblastos , Humanos , Interleucina-6/genética , Resveratrol/farmacologia
13.
Biomolecules ; 10(5)2020 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370178

RESUMO

The intake of dietary lipids is known to affect the composition of phospholipids in gastrointestinal cells, thereby influencing passive lipid absorption. However, dietary lipids rich in polyunsaturated fatty acids, such as vegetable oils, are prone to oxidation. Studies investigating the phospholipid-regulating effect of oxidized lipids are lacking. We aimed at identifying the effects of oxidized lipids from moderately (18.8 ± 0.39 meq O2/kg oil) and highly (28.2 ± 0.39 meq O2/kg oil) oxidized and in vitro digested cold-pressed grape seed oils on phospholipids in human gastric tumor cells (HGT-1). The oils were analyzed for their antioxidant constituents as well as their oxidized triacylglycerol profile by LC-MS/MS before and after a simulated digestion. The HGT-1 cells were treated with polar oil fractions containing epoxidized and hydroperoxidized triacylglycerols for up to six hours. Oxidized triacylglycerols from grape seed oil were shown to decrease during the in vitro digestion up to 40% in moderately and highly oxidized oil. The incubation of HGT-1 cells with oxidized lipids from non-digested oils induced the formation of cellular phospholipids consisting of unsaturated fatty acids, such as phosphocholines PC (18:1/22:6), PC (18:2/0:0), phosphoserine PS (42:8) and phosphoinositol PI (20:4/0:0), by about 40%-60%, whereas the incubation with the in vitro digested oils did not affect the phospholipid metabolism. Hence, the gastric conditions inhibited the phospholipid-regulating effect of oxidized triacylglycerols (oxTAGs), with potential implications in lipid absorption.


Assuntos
Antioxidantes/metabolismo , Digestão , Suco Gástrico/metabolismo , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Humanos , Oxirredução , Triglicerídeos/metabolismo , Vitis/química
14.
Mol Nutr Food Res ; 62(17): e1701038, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30133134

RESUMO

SCOPE: Cinnamon is associated with anti-obesity effects, regulating food intake, improving plasma glucose levels and lipid profiles in vivo. In the present study, the impact of cinnamyl isobutyrate (CIB), one constituent of cinnamon, on ad libitum food intake from a standardized breakfast and outcome measures of hormonal regulation of appetite were investigated. METHODS AND RESULTS: In this randomized, short-term crossover intervention study, a 75 g per 300 mL glucose solution solely (control) or supplemented with 0.45 mg CIB was administered to 26 healthy volunteers. Prior to and 2 h after receiving control or CIB treatment, subjective hunger perceptions were rated using a visual analog scale. Food intake from a standardized breakfast was assessed 2 h after treatments. Plasma peptide YY3-36 , glucagon-like-peptide1, ghrelin, and serotonin as well as plasma glucose and insulin were measured in blood samples drawn at fasting and 15, 30, 60, 90, and 120 min after treatment. CIB administration decreased total energy intake and delta area under curve plasma glucose by 4.64 ± 3.51% and 49.3 ± 18.5% compared to control treatment, respectively. CONCLUSIONS: CIB, administered at a 0.45 mg bolus in 75 g glucose-water solution, decreased ad libitum energy intake from a standardized breakfast and postprandial plasma glucose levels.


Assuntos
Glicemia/metabolismo , Cinamatos/farmacologia , Ingestão de Energia/efeitos dos fármacos , Sobrepeso/dietoterapia , Adulto , Glicemia/análise , Desjejum , Suplementos Nutricionais , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Teste de Tolerância a Glucose , Humanos , Insulina , Masculino , Nutrientes/farmacologia , Sobrepeso/sangue , Período Pós-Prandial , Saciação/efeitos dos fármacos , Serotonina/sangue
15.
Food Funct ; 9(7): 3906-3915, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29972203

RESUMO

Advanced glycation end products (AGEs) are frequently encountered in a western diet, in addition to their formation in vivo. N-Epsilon-carboxymethyllysine (CML), one of the chemically diverse compounds formed in the reaction between reducing carbohydrates and amines, is often used as a marker of advanced glycation, and has been shown to stimulate serotonin release from cells representing the central (SH-SY5Y cells) and the peripheral (Caco-2 cells) serotonin system in vitro. Here, we investigated the effect of glyoxal, free CML, and protein-linked AGE-BSA on serotonin release from human gastric tumour cells, which originate from an adenocarcinoma of the stomach and have recently been shown to be capable of serotonin synthesis and release. Microarray experiments showed both CML and glyoxal to alter genes associated with serotonin receptors. Furthermore, treatment with glyoxal resulted in a small change in RAGE expression while CML did not alter its expression. On a functional level, treatment with 500 µM CML increased extracellular serotonin content by 341 ± 241%, while treatment with 1 mg mL-1 AGE-BSA led to a reduction by 49 ± 11% compared to non-treated cells. The CML-induced serotonin release was reduced by the HTR3 antagonist granisetron. Incubation with the RAGE antagonist FPS-ZM1 abolished the effect of AGE-BSA on serotonin release, while no impact on CML-induced serotonin release was observed. Furthermore, treatment with 5 mM CML stimulated proton secretion as a functional outcome measure, assessed using a pH sensitive dye. Taken together, these results indicate a likely HTR3-mediated, RAGE-independent effect of free CML on serotonin release and a RAGE-dependent mechanism for the protein linked AGE-BSA.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Glioxal/farmacologia , Lisina/análogos & derivados , Serotonina/metabolismo , Soroalbumina Bovina/metabolismo , Células CACO-2 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lisina/farmacologia , Reação de Maillard , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
16.
Inorg Chem ; 57(13): 7925-7931, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29926720

RESUMO

In the current investigation, the reaction of Fe2(CO)9 with the ligand precursor 2-chloro-N1,N3-bis(diisopropylphosphanyl)-N1,N3-diethylbenzene-1,3-diamine (P(C-Cl)PNEt- iPr) (1) was investigated. When a suspension of Fe2(CO)9 and 1 in CH3CN was transferred in a sealed microwave glass vial and stirred for 18 h at 110 °C the complex [Fe(PCPNEt- iPr)(CO)2Cl] (2) was obtained. In an attempt to prepare the hydride Fe(II) complex [Fe(PCPNEt- iPr)(CO)2H] (3), 2 was reacted with 1 equiv of Li[HBEt3] in THF. Instead of ligand substitution, this complex underwent a one electron reduction which led to the formation of the low-spin d7 Fe(I) complex [Fe(PCPNEt- iPr)(CO)2] (4). Exposure of a benzene solution of 4 to NO gas (1 bar) at room temperature affords the diamagnetic complex [Fe(PCPNEt- iPr)(CO)(NO)] (5). This is the first iron PCP nitrosyl complex. Protonation of 5 with HBF4·Et2O affords the cationic Fe(0) complex [Fe(κ3 P,CH,P-P(CH)PNEt- iPr)(CO)(NO)]BF4 (6) which features an η2-Caryl-H agostic bond. Even with relatively weak bases such as NEt3 the agostic C-H bond can be deprotonated with reformation of the starting material 5. Therefore, protonation of 5 is completely reversible.

17.
J Agric Food Chem ; 66(26): 6762-6771, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29879844

RESUMO

Secretion of gastric acid, aimed at preventing bacterial growth and aiding the digestion of foods in the stomach, is chiefly stimulated by dietary intake of protein and amino acids (AAs). However, AAs' key structural determinants responsible for their effects on mechanisms regulating gastric acid secretion (GAS) have not been identified yet. In this study, AAs have been tested in the parietal cell model HGT-1 on GAS and on mRNA expression of genes regulating GAS. AAs' taste intensities from 0 (not bitter at all) to 10 (very bitter) were assessed in a sensory study, in which ARG (l: 6.42 ± 0.41; d: 4.62 ± 0.59) and ILE (l: 4.21 ± 0.43; d: 2.28 ± 0.33) were identified as bitter-tasting candidates in both isomeric forms. Pearson correlation showed that GAS in HGT-1 cells is directly associated with the bitter taste quality ( r: -0.654) in combination with the molecular weight of l-AA ( r: -0.685).


Assuntos
Aminoácidos/metabolismo , Ácido Gástrico/metabolismo , Células Parietais Gástricas/metabolismo , Paladar , Adulto , Aminoácidos/química , Linhagem Celular Tumoral , Humanos , Peso Molecular , Adulto Jovem
18.
J Agric Food Chem ; 66(27): 7044-7053, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29874909

RESUMO

The role of sweet taste in energy intake and satiety regulation is still controversial. Noncaloric artificial sweeteners (NCSs) are thought to help reduce energy intake, although little is known about their impact on the satiating neurotransmitter serotonin (5-HT). In the gastrointestinal (GI) tract, 5-HT regulates gastric acid secretion and gastric motility, both part of the complex network of mechanisms regulating food intake and satiety. This study demonstrated a stimulating impact compared to controls (100%) on 5-HT release in human gastric tumor cells (HGT-1) by the NCSs cyclamate (50 mM, 157% ± 6.3%), acesulfame potassium (Ace K, 50 mM, 197% ± 8.6%), saccharin (50 mM, 147% ± 6.7%), sucralose (50 mM, 194% ± 11%), and neohesperidin dihydrochalcone (NHDC, 1 mM, 201% ± 13%). Although these effects were not associated with the sweet taste intensity of the NCSs tested, involvement of the sweet receptor subunit T1R3 in the NCS-evoked response was demonstrated by mRNA expression of TAS1R3, co-incubation experiments using the T1R3 receptor antagonist lactisole, and a TAS1R3 siRNA knockdown approach. Analysis of the downstream signaling revealed activation of the cAMP/ERK/Ca2+ cascade. Co-treatment experiments with 10 mM glucose enhanced the 5-HT release induced by cyclamate, Ace K, saccharin, and sucralose, thereby supporting the enhancing effect of glucose on a NCS-mediated response. Overall, the results obtained identify NCSs as potent inducers of 5-HT release via T1R3 in human gastric parietal cells in culture and warrant in vivo studies to demonstrate their efficacy.


Assuntos
Células Parietais Gástricas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Edulcorantes/farmacologia , Derivados de Benzeno/farmacologia , Linhagem Celular Tumoral , Chalconas/farmacologia , Ciclamatos/farmacologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hesperidina/análogos & derivados , Hesperidina/farmacologia , Humanos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia , Receptores Acoplados a Proteínas G/genética , Sacarina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Tiazinas/farmacologia
19.
J Agric Food Chem ; 66(19): 4842-4852, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29665689

RESUMO

The noncaloric sweeteners (NCSs) cyclamate (Cycl) and acesulfame K (AceK) are widely added to foods and beverages. Little is known about their impact on gastric acid secretion (GAS), which is stimulated by dietary protein and bitter-tasting compounds. Since Cycl and AceK have a bitter off taste in addition to their sweet taste, we hypothesized they modulate mechanisms of GAS in human gastric parietal cells (HGT-1). HGT-1 cells were exposed to sweet tastants (50 mM of glucose, d-threonine, Cycl, or AceK) and analyzed for their intracellular pH index (IPX), as an indicator of proton secretion by means of a pH-sensitive dye, and for mRNA levels of GAS-associated genes by RT-qPCR. Since the NCSs act via the sweet taste-sensing receptor T1R2/T1R3, mRNA expression of the corresponding genes was analyzed in addition to immunocytochemical localization of the T1R2 and T1R3 receptor proteins. Exposure of HGT-1 cells to AceK or d-threonine increased the IPX to 0.60 ± 0.05 and 0.80 ± 0.04 ( P ≤ 0.05), respectively, thereby indicating a reduced secretion of protons, whereas Cycl demonstrated the opposite effect with IPX values of -0.69 ± 0.08 ( P ≤ 0.05) compared to controls (IPX = 0). Cotreatment with the T1R3-inhibitor lactisole as well as a TAS1R3 siRNA knock-down approach reduced the impact of Cycl, AceK, and d-thr on proton release ( P ≤ 0.05), whereas cotreatment with 10 mM glucose enhanced the NCS-induced effect ( P ≤ 0.05). Overall, we demonstrated Cycl and AceK as modulators of proton secretion in HGT-1 cells and identified T1R3 as a key element in this response.


Assuntos
Ciclamatos/metabolismo , Ácido Gástrico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/metabolismo , Tiazinas/metabolismo , Linhagem Celular Tumoral , Humanos , Receptores Acoplados a Proteínas G/genética
20.
Food Funct ; 9(2): 1123-1132, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29362767

RESUMO

Capsaicin, the highly pungent principle of red pepper, has been demonstrated to have anti-obesity properties by affecting energy and lipid metabolism. Recent evidence from human intervention trials shows that also less pungent capsaicin analogs, like nonivamide, may help to reduce total body fat, although mechanistic data comparing the effects of capsaicin and nonivamide on outcome measures of energy metabolism are lacking. Here, the tissue-specific effects of capsaicin and nonivamide on parameters of mitochondrial energy metabolism in 3T3-L1 and HepG2 cells are investigated. Lipid accumulation was reduced to a similar extent after treatment with both test substances during the maturation of 3T3-L1 cells by up to 6.91% for capsaicin and up to 4.89% for nonivamide (p < 0.01) at a concentration of 0.1 µM or 1 µM, respectively. Energy-producing pathways, as indicated by the reduced mitochondrial oxygen consumption and reduced glucose and fatty acid uptake, were diminished after incubation with both capsaicinoids at a concentration of 100 µM. The results from HPLC analyses revealed a reduced cellular energy charge potential after a 4 h treatment with nonivamide. In HepG2 cells, similar effects were demonstrated: the glucose uptake was reduced by 18.7% and 25.8% (p < 0.05), after a 24 h incubation with 100 µM capsaicin and nonivamide, respectively. In addition, the fatty acid uptake and oxygen consumption were decreased and the energy charge potential was diminished. These findings provide evidence that concentrations of capsaicin and nonivamide between 0.1 and 100 µM modulate the mechanisms of cellular energy metabolism to a similar extent, independent of the investigated tissue.


Assuntos
Capsaicina/análogos & derivados , Capsaicina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Células 3T3-L1 , Animais , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA