Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(14): 3156-3169, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35552677

RESUMO

PURPOSE: Paclitaxel (PTX) is one of the most potent and commonly used chemotherapies for breast and pancreatic cancer. Several ongoing clinical trials are investigating means of enhancing delivery of PTX across the blood-brain barrier for glioblastomas. Despite the widespread use of PTX for breast cancer, and the initiative to repurpose this drug for gliomas, there are no predictive biomarkers to inform which patients will likely benefit from this therapy. EXPERIMENTAL DESIGN: To identify predictive biomarkers for susceptibility to PTX, we performed a genome-wide CRISPR knockout (KO) screen using human glioma cells. The genes whose KO was most enriched in the CRISPR screen underwent further selection based on their correlation with survival in the breast cancer patient cohorts treated with PTX and not in patients treated with other chemotherapies, a finding that was validated on a second independent patient cohort using progression-free survival. RESULTS: Combination of CRISPR screen results with outcomes from patients with taxane-treated breast cancer led to the discovery of endoplasmic reticulum (ER) protein SSR3 as a putative predictive biomarker for PTX. SSR3 protein levels showed positive correlation with susceptibility to PTX in breast cancer cells, glioma cells, and in multiple intracranial glioma xenografts models. KO of SSR3 turned the cells resistant to PTX while its overexpression sensitized the cells to PTX. Mechanistically, SSR3 confers susceptibility to PTX through regulation of phosphorylation of ER stress sensor IRE1α. CONCLUSIONS: Our hypothesis generating study showed SSR3 as a putative biomarker for susceptibility to PTX, warranting its prospective clinical validation.


Assuntos
Antineoplásicos Fitogênicos , Biomarcadores Farmacológicos , Neoplasias Encefálicas , Neoplasias da Mama , Proteínas de Ligação ao Cálcio , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Glicoproteínas de Membrana , Paclitaxel , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Endorribonucleases/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Paclitaxel/uso terapêutico , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neurosurgery ; 80(4): 590-601, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27509070

RESUMO

BACKGROUND: Extent of resection (EOR) correlates with glioblastoma outcomes. Resectability and EOR depend on anatomical, clinical, and surgeon factors. Resectability likely influences outcome in and of itself, but an accurate measurement of resectability remains elusive. An understanding of resectability and the factors that influence it may provide a means to control a confounder in clinical trials and provide reference for decision making. OBJECTIVE: To provide proof of concept of the use of the collective wisdom of experienced brain tumor surgeons in assessing glioblastoma resectability. METHODS: We surveyed 13 academic tumor neurosurgeons nationwide to assess the resectability of newly diagnosed glioblastoma. Participants reviewed 20 cases, including digital imaging and communications in medicine-formatted pre- and postoperative magnetic resonance images and clinical vignettes. The selected cases involved a variety of anatomical locations and a range of EOR. Participants were asked about surgical goal, eg, gross total resection, subtotal resection (STR), or biopsy, and rationale for their decision. We calculated a "resectability index" for each lesion by pooling responses from all 13 surgeons. RESULTS: Neurosurgeons' individual surgical goals varied significantly ( P = .015), but the resectability index calculated from the surgeons' pooled responses was strongly correlated with the percentage of contrast-enhancing residual tumor ( R = 0.817, P < .001). The collective STR goal predicted intraoperative decision of intentional STR documented on operative notes ( P < .01) and nonresectable residual ( P < .01), but not resectable residual. CONCLUSION: In this pilot study, we demonstrate the feasibility of measuring the resectability of glioblastoma through crowdsourcing. This tool could be used to quantify resectability, a potential confounder in neuro-oncology clinical trials.


Assuntos
Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Neoplasia Residual/cirurgia , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neoplasia Residual/diagnóstico por imagem , Neoplasia Residual/patologia , Procedimentos Neurocirúrgicos/métodos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA