Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nephrology (Carlton) ; 29(9): 555-564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011853

RESUMO

AIM: Rhodojaponin VI (R-VI) is the key compound of Rhododendron molle G. Don (Ericaceae) (RM) with effective clinical application in rheumatoid arthritis and chronic glomerulonephritis. In our study, we tried to explore the effect of R-VI on the rat model of membranous nephropathy. METHODS: The rat model of passive heymann nephritis (PHN) was established by injecting sheep anti-rat Fx1A serum at a single dose through the tail. The rats were orally administered R-VI (0.02 mg/kg) or FK506 (1 mg/kg) 1 day before PHN induction, which was kept for 4 weeks. Urine and blood samples as well as kidney tissue were collected for analysis. C5b-9-induced human podocyte cell (HPC) was employed for experiments in vitro. RESULTS: R-VI could alleviate glomerulonephritis progression and podocyte injury in PHN rats, as indicated by the decreased proteinuria and the elevated level of albumin, accompanied with reduced immune deposits, reversed podocyte injury in the kidneys. Furthermore, R-VI suppressed murine double minute 2 (MDM2) expression without the alteration in the protein level of p53 and decreased Notch1 expression independent of Numb regulation. Pre-treatment with R-VI in C5b-9-induced HPC blocked MDM2/Notch1 signalling pathway. CONCLUSION: Thus, R-VI ameliorates podocyte injury in rats with PHN, which was probably related with MDM2/Notch1 signalling pathway.


Assuntos
Modelos Animais de Doenças , Glomerulonefrite Membranosa , Podócitos , Proteínas Proto-Oncogênicas c-mdm2 , Receptor Notch1 , Saponinas , Transdução de Sinais , Animais , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/metabolismo , Receptor Notch1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Saponinas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
2.
FASEB J ; 38(2): e23422, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38206179

RESUMO

Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD), poses a significant burden in the aging population, and is a major cause of end-stage renal disease (ESRD). In this study, we investigated the role of G protein-coupled receptor kinases (GRKs) 5 in the pathogenesis of renal fibrosis. GRK5 is a serine/threonine kinase that regulates G protein-coupled receptor (GPCR) signaling. GRK5 has been shown to play a role in various diseases including cardiac disorders and cancer. However, the role of GRK5 in renal fibrosis remains largely unknown. Our finding revealed that GRK5 was significantly overexpressed in renal fibrosis. Specifically, GRK5 was transferred into the nucleus via its nuclear localization sequence to regulate histone deacetylases (HDAC) 5 expression under renal fibrosis. GRK5 acted as an upstream regulator of HDAC5/Smad3 signaling pathway. HDAC5 regulated and prevented the transcriptional activity of myocyte enhancer factor 2A (MEF2A) to repress the transcription of Smad7 which leading to the activation of Smad3. These findings first revealed that GRK5 may be a potential therapeutic target for the treatment of renal fibrosis. Inhibition of GRK5 activity may be a promising strategy to attenuate the progression of renal fibrosis.


Assuntos
Quinase 5 de Receptor Acoplado a Proteína G , Insuficiência Renal Crônica , Transdução de Sinais , Humanos , Fibrose , Quinase 5 de Receptor Acoplado a Proteína G/genética , Histona Desacetilases/genética , Receptores Acoplados a Proteínas G
3.
iScience ; 26(10): 107940, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810227

RESUMO

Minichromosome maintenance 6 (MCM6) has been implicated in the progression of various malignant tumors; however, its exact physiological function in kidney diseases remains unclear. Here, we demonstrated that MCM6 levels showed a significant increase in the proximal tubular cells during progressive renal fibrosis in two unrelated in vivo fibrotic models, including unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Depletion of MCM6 aggravated partial epithelial-mesenchymal transition, extracellular matrix accumulation, and myofibroblast activation in the kidneys of UUO or UIRI mice. Conversely, overexpression of MCM6 promoted the recovery of E-cadherin and retarded UUO- or UIRI-induced renal fibrosis. In addition, DUSP6 expression substantially decreased in fibrotic kidneys, and it might be involved in MCM6-induced renal fibrosis by regulating the activation of ERK/GSK-3ß/Snail1 signaling. In conclusion, our results highlight the significance of MCM6 in renal fibrosis, providing a potential therapeutic target for patients with chronic kidney disease.

4.
J Inflamm Res ; 15: 4027-4045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873385

RESUMO

Purpose: In schistosomiasis-associated hepatic fibrosis, the role of murine UL16-binding protein-like transcript 1 (MULT1), the strongest ligand of natural killer group 2-member D receptor (NKG2D), remains unclear. Here, Schistosoma japonicum-infected mice administered with MULT1-encoding DNA were used to test MULT1 as a potential therapy for schistosomiasis-associated hepatic fibrosis and explore relevant mechanisms. Materials and Methods: A recombinant plasmid encoding MULT1 (p-rMULT1) was constructed and administered to Schistosoma japonicum-infected BALB/c mice via hydrodynamic tail vein injection. Egg granulomas in liver, hepatic fibrosis biomarkers and levels of cytokines were investigated. Comparisons of CD4+ T, CD8+ T, NK and NKT proportions as well as their phenotype were performed not only between Schistosoma infected, p-rMULT1 treated group and Schistosoma infected, backbone plasmid pEGFP-N1 treated group but also between infected, nontreated group and health control group. Results: Reduced area of granuloma formation and fibrosis around single eggs, downregulated expression of collagen I, α-smooth muscle actin, TGF-ß and IL-10, and upregulated expression of IFN-γ, were observed in the livers of p-rMULT1 treated mice. p-rMULT1 treatment improved Schistosoma infection impacted immune microenvironment by modulating proportion of CD4+ T CD8+ T, natural killer (NK) and NKT cells, enhancing expression of NKG2D, in lymphocytes, and augmenting IFN-γ secretion by CD4+ T, CD8+ T, NK and NKT cells, as well as partially reversing some other phenotype changes of lymphocytes. Conclusion: To the best of our knowledge, we provided the first in vivo evidence that MULT1 is a favorable anti-fibrosis factor in the context of schistosomiasis. The inhibitory effect of MULT1 overexpression on schistosomiasis associated with hepatic fibrosis may result from augmenting the proportion and function of NKG2D-expressing immune cells, and from enhancing NK- and T-cell activation, as well as regulating the helper T (Th)1/Th2 balance.

5.
Biomed Pharmacother ; 144: 112266, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634555

RESUMO

BACKGROUND: In the present study, we aimed to investigate the effects of probucol on aging-related hippocampus-dependent cognitive impairment and explore the potential mechanisms. METHODS: D-galactose (100 mg/kg, once daily for 6 weeks) was subcutaneously injected to induce aging in mice. Then the mice were administered with probucol or vehicle once a day for 2 weeks. The hippocampus-related cognition was evaluated with Morris water maze test, novel object recognition test, and contextual fear conditioning test. Moreover, synaptic plasticity was assessed, and RNA-sequencing was applied to further explore the molecular mechanisms. RESULTS: Aging mice induced by D-galactose showed conspicuous learning and memory impairment, which was significantly ameliorated by probucol. Meanwhile, probucol enhanced the spine density and dendritic branches, improved long-term potentiation, and increased the expression of PSD95 of aging mice. Probucol regulated 70 differentially expressed genes compared to D-galactose group, of which 38 genes were upregulated and 32 genes were downregulated. At last, RNA-sequencing results were verified by quantitative reverse transcription-polymerase chain reaction. CONCLUSIONS: Probucol improved learning and memory in aging mice through enhancing synaptic plasticity and regulating gene expression, indicating the potential application of probucol to prevent and treat aging-related disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Probucol/farmacologia , Fatores Etários , Animais , Senescência Celular/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Medo/efeitos dos fármacos , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Teste de Campo Aberto/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Kidney Dis (Basel) ; 7(3): 176-185, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34179113

RESUMO

BACKGROUND: Chemokines are a family of proteins mainly mediating the homing and migration of various cells. The CXC chemokine CXCL12 is a member of low-weight-molecular chemokines. In the kidney, CXCL12 is pivotal for renal development and exerts a modulatory effect in kidney diseases under different etiologic settings by binding with CXC chemokine receptor 4 (CXCR4) or CXC chemokine receptor 7 (CXCR7). Besides, CXCL12 also exerts homeostasis influence in diverse physical conditions and various pathological situations. Thus, we conclude the complicated relationship between CXCL12 and kidney diseases in this review. SUMMARY: In renal development, CXCL12 contributes a lot to nephrogenesis and the formation of renal vasculature via correlating with CXCR4. CXCL12 also plays an essential role in renal recovery from acute kidney injury. However, the CXCL12/CXCR4 axis plays a dual regulatory role in the initiation and development of diabetic kidney disease as well as chronic allogeneic nephropathy after kidney transplantation through dialectical consideration. Additionally, the CXCL12/CXCR4 link is considered as a new risk factor for lupus nephritis and renal cell carcinoma. KEY MESSAGES: Plenty of studies have presented the influence of CXCL12 and the relation with corresponding receptors in diverse biological and pathological statuses. Simultaneously, some drugs and antagonists targeting CXCL12/CXCR4 axis effectively treat various kidney diseases. However, more researches are needed to explore thorough influence and mechanisms, providing more cues for clinical treatments.

7.
Biomed Pharmacother ; 138: 111454, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714781

RESUMO

Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes mellitus (T2DM), acting via indirect activation of 5' Adenosine monophosphate-activated Protein Kinase (AMPK). Beyond the anti-diabetic effect, accumulative pieces of evidence have revealed that metformin also everts a beneficial effect in diverse kidney diseases. In various acute kidney diseases (AKI) animal models, metformin protects renal tubular cells from inflammation, apoptosis, reactive oxygen stress (ROS), endoplasmic reticulum (ER) stress, epithelial-mesenchymal transition (EMT) via AMPK activation. In diabetic kidney disease (DKD), metformin also alleviates podocyte loss, mesangial cells apoptosis, and tubular cells senescence through AMPK-mediated signaling pathways. Besides, metformin inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluids secretion and the mammalian target of rapamycin (mTOR)-involved cyst formation negatively regulated by AMPK in autosomal dominant polycystic kidney disease (APDKD). Furthermore, metformin also contributes to the alleviation of urolithiasis and renal cell carcinoma (RCC). As the common pathway for chronic kidney disease (CKD) progressing towards end-stage renal disease (ESRD), renal fibrosis is ameliorated by metformin, to a great extent dependent on AMPK activation. However, clinical data are not always consistent with preclinical data, some clinical investigations showed the unmeaningful even detrimental effect of metformin on T2DM patients with kidney diseases. Most importantly, metformin-associated lactic acidosis (MALA) is a vital issue restricting the application of metformin. Thus, we conclude the application of metformin in kidney diseases and uncover the underlying molecular mechanisms in this review.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Nefropatias/tratamento farmacológico , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Acidose Láctica/induzido quimicamente , Acidose Láctica/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Hipoglicemiantes/farmacologia , Nefropatias/metabolismo , Metformina/farmacologia , Estudos Observacionais como Assunto , Estudos Retrospectivos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA