Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36668756

RESUMO

The evaluation of the catalytic capacity of catalysts is indispensable research, as catalytic capacity is a crucial factor to dictate the efficiency of heterogeneous Fenton catalysis. Herein, we obtained cigarette tar-methanol extracts (CTME) by applying methanol to cigarette tar and found that CTME could cause CL reactions with Fe2+/H2O2 systems in acidic, neutral, and alkaline media. The CL spectrum experiment indicated that the emission wavelengths of the CTME CL reaction with Fe2+/H2O2 systems were about 490 nm, 535 nm, and 590 nm. Quenching experiments confirmed that hydroxyl radicals (•OH) were responsible for the CL reaction for CTME. Then the CL property of CTME was applied in-situ to rapidly determine the amounts of •OH in tetrachloro-1,4-benzoquinone (TCBQ)/H2O2 system in acidic, neutral and alkaline media, and the CL intensities correlated the best (R2 = 0.99) with TCBQ concentrations. To demonstrate the utility of the CTME CL method, the catalytic capacity of different types and concentrations of catalysts in heterogeneous Fenton catalysis were examined. It was found that the order of CL intensities was consistent with the order of degradation efficiencies of Rhodamine B, indicating that this method could distinguish the catalytic capacity of catalysts. The CTME CL method could provide a convenient tool for the efficient evaluation of the catalytic capacity of catalysts in heterogeneous Fenton catalysis.

2.
Ecotoxicol Environ Saf ; 188: 109826, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31732271

RESUMO

Quinclorac (QNC) is an effective but environmentally persistent herbicide commonly used in rice production. However, few studies have investigated its environmental behavior and degradation. In the present study, we carried out microbial cultures in the presence of QNC to observe changes in soil microbiota and to identify species capable of QNC degradation by using high-throughput sequencing of the 16S rRNA. Pseudomonas was the dominant genus, and Pseudomonas putida II-2 and other species were found to be capable of mineralizing QNC as a source of carbon and energy. However, this degradation rate was slow, only reaching 51.5 ± 1.6% for 7 days at 30 °C on QNC + minimal salt medium. Achromobacter sp. QC36 co-metabolized QNC when rice straw was added into the mineral salt medium containing QNC, and a mixed culture of both strains could mineralize approximately 92% of the 50 mg/L QNC after 5 days of cultivation in the presence of rice straw, at 25-35 °C and pH 6.0-8.0. Non-phytotoxicity of tobacco after degradation of QNC by mixed strains was evidenced in a pot experiment. These results suggest that this mixed culture may be useful in QNC bioremediation and can be used as a bio-formulation for agro-economical and industrial application.


Assuntos
Achromobacter/crescimento & desenvolvimento , Herbicidas/análise , Pseudomonas putida/crescimento & desenvolvimento , Quinolinas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Achromobacter/metabolismo , Biodegradação Ambiental , Oryza/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , RNA Ribossômico 16S/genética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA