Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 228-235, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713961

RESUMO

The development of heterogeneous supported nanocatalysts with a high kinetics combined with low cost is off importance but remains still challenged for hydrazine hydrate served as a promising hydrogen storage material. Herein, by virtue of surficial functional groups, ultrafine NiRh NPs were monodispersed on the two-dimensional V2C surface via a conventional wet chemical co-reduction. The optimized NiRh/V2C system demonstrates an excellent catalytic performance toward selectively catalyzing dehydrogenation of hydrazine hydrate, affording 100% H2 selectivity with the turnover frequency (TOF) value of 987.5 h-1 at 323 K. Such an enhancement is mainly attributed to synergistic effect of nanosystem, which will optimize local surface energy and promote electron transfer in NiRh/V2C system, thereby improving the kinetic selectivity of catalytic hydrazine hydrate decomposition. This work has provided a facile strategy for developing nanocatalysts with high kinetics that could enable huge industrial applications in the future.

2.
Small ; 19(9): e2206859, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564350

RESUMO

Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is important for hydrogen economy but suffers from sluggish reaction kinetics due to a large water dissociation energy barrier. Herein, Pt5 P2 nanocrystals anchoring on amorphous nickel phosphate nanorods as a high-performance interfacial electrocatalyst system (Pt5 P2 NCs/a-NiPi) for the alkaline HER are demonstrated. At the unique polycrystalline/amorphous interface with abundant defects, strong electronic interaction, and optimized intermediate adsorption strength, water dissociation is accelerated over abundant oxophilic Ni sites of amorphous NiPi, while hydride coupling is promoted on the adjacent electron-rich Pt sites of Pt5 P2 . Meanwhile, the ultra-small-sized Pt5 P2 nanocrystals and amorphous NiPi nanorods maximize the density of interfacial active sites for the Volmer-Tafel reaction. Pt5 P2 NCs/a-NiPi exhibits small overpotentials of merely 9 and 41 mV at -10 and -100 mA cm-2 in 1 M KOH, respectively. Notably, Pt5 P2 NCs/a-NiPi exhibits an unprecedentedly high mass activity (MA) of 14.9 mA µgPt -1 at an overpotential of 70 mV, which is 80 times higher than that of Pt/C and represents the highest MA of reported Pt-based electrocatalysts for the alkaline HER. This work demonstrates a phosphorization and interfacing strategy for promoting Pt utilization and in-depth mechanistic insights for the alkaline HER.

3.
J Phys Chem Lett ; 12(46): 11361-11370, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34784226

RESUMO

Development of efficient bifunctional nonprecious metallic electrocatalysts for hydrogen electrochemistry in alkaline solution is of importance to enable commercialization of a low-cost alkaline hydrogen fuel cell and water electrolyzer, but it is very challenging. Two-dimensional (2D) MXene-based electrocatalysts hold tremendous potential for the applications of hydrogen fuel cell and water electrolyzer. Here, we successfully immobilized transition-metal-based NiMo nanoparticles (NPs) on 2D Ti3C2Tx (Tx: surface terminations, such as O, OH, or F) surfaces by a wet chemical method. Our results demonstrate that the NiMo NPs are monodispersed on Ti3C2Tx with surface functionalization. These monodisperse NPs resulted in superior hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) activities in an alkaline media. The NiMo NPs/Ti3C2Tx in 1.0 M KOH yielded an HER current of -10 mA cm-2 at -0.044 V vs reversible hydrogen electrode (RHE), nearly 232 mV smaller than that of the parent NiMo NPs. The NiMo NPs/Ti3C2Tx produced an HOR current density of 1.5 mA cm-2 at 0.1 V vs RHE. Density functional theory (DFT) results further reveal that Ti3C2Tx support can facilitate the charge transfer to metallic NPs and tailor the electronic structure of catalytic sites, resulting in optimized adsorption free energies of H* species for hydrogen electrochemistry. This work provides a facile and universal strategy in the development of 2D Ti3C2Tx with nonprecious metals for low-cost bifunctional hydrogen electrocatalysts.

4.
Nat Commun ; 9(1): 4531, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382092

RESUMO

Electrocatalysts of the hydrogen evolution and oxidation reactions (HER and HOR) are of critical importance for the realization of future hydrogen economy. In order to make electrocatalysts economically competitive for large-scale applications, increasing attention has been devoted to developing noble metal-free HER and HOR electrocatalysts especially for alkaline electrolytes due to the promise of emerging hydroxide exchange membrane fuel cells. Herein, we report that interface engineering of Ni3N and Ni results in a unique Ni3N/Ni electrocatalyst which exhibits exceptional HER/HOR activities in aqueous electrolytes. A systematic electrochemical study was carried out to investigate the superior hydrogen electrochemistry catalyzed by Ni3N/Ni, including nearly zero overpotential of catalytic onset, robust long-term durability, unity Faradaic efficiency, and excellent CO tolerance. Density functional theory computations were performed to aid the understanding of the electrochemical results and suggested that the real active sites are located at the interface between Ni3N and Ni.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA