Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225393

RESUMO

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Assuntos
Doença de Alzheimer , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Canais de Potencial de Receptor Transitório , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
2.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Autophagy ; 17(11): 3833-3847, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33622188

RESUMO

Alzheimer disease (AD) is the most prevalent neurodegenerative disorder leading to dementia in the elderly. Unfortunately, no cure for AD is available to date. Increasing evidence has proved the roles of misfolded protein aggregation due to impairment of the macroautophagy/autophagy-lysosomal pathway (ALP) in the pathogenesis of AD, and thus making TFEB (transcription factor EB), which orchestrates ALP, as a promising target for treating AD. As a complementary therapy, acupuncture or electroacupuncture (EA) has been commonly used for treating human diseases. Although the beneficial effects of acupuncture for AD have been primarily studied both pre-clinically and clinically, the real efficacy of acupuncture on AD remains inconclusive and the underlying mechanisms are largely unexplored. In this study, we demonstrated the cognitive-enhancing effect of three-needle EA (TNEA) in an animal model of AD with beta-amyloid (Aß) pathology (5xFAD). TNEA reduced APP (amyloid beta (A4) precursor protein), C-terminal fragments (CTFs) of APP and Aß load, and inhibited glial cell activation in the prefrontal cortex and hippocampus of 5xFAD. Mechanistically, TNEA activated TFEB via inhibiting the AKT-MAPK1-MTORC1 pathway, thus promoting ALP in the brains. Therefore, TNEA represents a promising acupuncture therapy for AD, via a novel mechanism involving TFEB activation.Abbreviations Aß: ß-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; AKT1: thymoma viral proto-oncogene 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta (A4) precursor protein; BACE1: beta-site APP cleaving enzyme 1; CQ: chloroquine; CTFs: C-terminal fragments; CTSD: cathepsin D; EA: electroacupuncture; FC: fear conditioning; GFAP: glial fibrillary acidic protein; HI: hippocampus; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPT: microtubule-associated protein tau; MTORC1: mechanistic target of rapamycin kinase complex 1; MWM: Morris water maze; NFT: neurofibrillary tangles; PFC: prefrontal cortex; PSEN1: presenilin 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TNEA: three-needle electroacupuncture.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/terapia , Eletroacupuntura , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Eletroacupuntura/métodos , Feminino , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Teste do Labirinto Aquático de Morris
4.
Cell Death Dis ; 11(2): 128, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071296

RESUMO

Autophagy, a conserved cellular degradation and recycling process, can be enhanced by nutrient depletion, oxidative stress or other harmful conditions to maintain cell survival. 6-Hydroxydopamine/ascorbic acid (6-OHDA/AA) is commonly used to induce experimental Parkinson's disease (PD) lesions by causing oxidative damage to dopaminergic neurons. Activation of autophagy has been observed in the 6-OHDA-induced PD models. However, the mechanism and exact role of autophagy activation in 6-OHDA PD model remain inconclusive. In this study, we report that autophagy was triggered via mucolipin 1/calcium/calcineurin/TFEB (transcription factor EB) pathway upon oxidative stress induced by 6-OHDA/AA. Interestingly, overexpression of TFEB alleviated 6-OHDA/AA toxicity. Moreover, autophagy enhancers, Torin1 (an mTOR-dependent TFEB/autophagy enhancer) and curcumin analog C1 (a TFEB-dependent and mTOR-independent autophagy enhancer), significantly rescued 6-OHDA/AA-induced cell death in SH-SY5Y cells, iPSC-derived DA neurons and mice nigral DA neurons. The behavioral abnormality of 6-OHDA/AA-treated mice can also be rescued by Torin 1 or C1 administration. The protective effects of Torin 1 and C1 can be blocked by autophagy inhibitors like chloroquine (CQ) or by knocking down autophagy-related genes TFEB and ATG5. Taken together, this study supports that TFEB-mediated autophagy is a survival mechanism during oxidative stress and pharmacological enhancement of this process is a neuroprotective strategy against oxidative stress-associated PD lesions.


Assuntos
Antiparkinsonianos/farmacologia , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Naftiridinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Ácido Ascórbico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Curcumina/análogos & derivados , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
5.
Redox Biol ; 32: 101445, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037305

RESUMO

TFEB (transcription factor EB) and TFE3 (transcription factor E3) are "master regulators" of autophagy and lysosomal biogenesis. The stress response p38 mitogen-activated protein (MAP) kinases affect multiple intracellular responses including inflammation, cell growth, differentiation, cell death, senescence, tumorigenesis, and autophagy. Small molecule p38 MAP kinase inhibitors such as SB202190 are widely used in dissection of related signal transduction mechanisms including redox biology and autophagy. Here, we initially aimed to investigate the links between p38 MAP kinase and TFEB/TFE3-mediated autophagy and lysosomal biogenesis. Unexpectedly, we found that only SB202190, rather than several other p38 inhibitors, promotes TFEB and TFE3 to translocate from the cytosol into the nucleus and subsequently enhances autophagy and lysosomal biogenesis. In addition, siRNA-mediated Tfeb and Tfe3 knockdown effectively attenuated SB202190-induced gene expression and lysosomal biogenesis. Mechanistical studies showed that TFEB and TFE3 activation in response to SB202190 is dependent on PPP3/calcineurin rather than on the inhibition of p38 or MTOR signaling, the main pathway for regulating TFEB and TFE3 activation. Importantly, SB202190 increased intracellular calcium levels, and calcium chelator BAPTAP-AM blocked SB202190-induced TFEB and TFE3 activation as well as autophagy and lysosomal biogenesis. Moreover, endoplasmic reticulum (ER) calcium is required for TFEB and TFE3 activation in response to SB202190. In summary, we identified a previously uncharacterized role of SB202190 in activating TFEB- and TFE3-dependent autophagy and lysosomal biogenesis via ER calcium release and subsequent calcium-dependent PPP3/calcineurin activation, leading to dephosphorylation of TFEB and TFE3. Given the importance of p38 MAP kinase invarious conditions including oxidative stress, the findings collectively indicate that SB202190 should not be used as a specific inhibitor for elucidating the p38 MAP kinase biological functions due to its potential effect on activating autophagy-lysosomal axis.


Assuntos
Lisossomos , Proteínas Quinases p38 Ativadas por Mitógeno , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Imidazóis , Piridinas , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
ACS Nano ; 14(2): 1533-1549, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32027482

RESUMO

Although emerging evidence suggests that the pathogenesis of Parkinson's disease (PD) is closely related to the aggregation of alpha-synuclein (α-syn) in the midbrain, the clearance of α-syn remains an unmet clinical need. Here, we develop a simple and efficient strategy for fabricating the α-syn nanoscavenger for PD via a reprecipitation self-assembly procedure. The curcumin analogue-based nanoscavenger (NanoCA) is engineered to be capable of a controlled-release property to stimulate nuclear translocation of the major autophagy regulator, transcription factor EB (TFEB), triggering both autophagy and calcium-dependent exosome secretion for the clearance of α-syn. Pretreatment of NanoCA protects cell lines and primary neurons from MPP+-induced neurotoxicity. More importantly, a rapid arousal intranasal delivery system (RA-IDDS) was designed and applied for the brain-targeted delivery of NanoCA, which affords robust neuroprotection against behavioral deficits and promotes clearance of monomer, oligomer, and aggregates of α-syn in the midbrain of an MPTP mouse model of PD. Our findings provide a clinically translatable therapeutic strategy aimed at neuroprotection and disease modification in PD.


Assuntos
Curcumina/uso terapêutico , Nanoestruturas/química , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/antagonistas & inibidores , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/síntese química , Curcumina/química , Liberação Controlada de Fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Células PC12 , Doença de Parkinson/patologia , Tamanho da Partícula , Agregados Proteicos/efeitos dos fármacos , Ratos , Propriedades de Superfície , alfa-Sinucleína/metabolismo
7.
Aging Cell ; 19(2): e13069, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31858697

RESUMO

Accumulating studies have suggested that targeting transcription factor EB (TFEB), an essential regulator of autophagy-lysosomal pathway (ALP), is promising for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, potent and specific small molecule TFEB activators are not available at present. Previously, we identified a novel TFEB activator named curcumin analog C1 which directly binds to and activates TFEB. In this study, we systematically investigated the efficacy of curcumin analog C1 in three AD animal models that represent beta-amyloid precursor protein (APP) pathology (5xFAD mice), tauopathy (P301S mice) and the APP/Tau combined pathology (3xTg-AD mice). We found that C1 efficiently activated TFEB, enhanced autophagy and lysosomal activity, and reduced APP, APP C-terminal fragments (CTF-ß/α), ß-amyloid peptides and Tau aggregates in these models accompanied by improved synaptic and cognitive function. Knockdown of TFEB and inhibition of lysosomal activity significantly inhibited the effects of C1 on APP and Tau degradation in vitro. In summary, curcumin analog C1 is a potent TFEB activator with promise for the prevention or treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/uso terapêutico , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Pareamento Cromossômico/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Curcumina/farmacologia , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno
8.
Cancer Lett ; 448: 117-127, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30742939

RESUMO

Studies have shown that hypoxia can induce cytoskeletal injury and remodeling through the activation of the RhoA/ROCK signaling pathway by hypoxia-inducible factor-1α (HIF-1α). Our previous study confirmed that CAPZA1 can modulate EMT by regulating actin cytoskeleton remodeling. However, the relationship between HIF-1α and CAPZA1 has not been illustrated. Therefore, this study aimed to investigate the mechanism by which hypoxia induces the remodeling of the actin cytoskeleton by regulating CAPZA1 in hepatocellular carcinoma (HCC) cells. In the present study, we showed that the low expression of CAPZA1 promotes HCC cell invasion and migration in vitro and in vivo by regulating actin cytoskeleton remodeling to drive EMT. Furthermore, we found that the combination of PIP2 and CAPZA1 enables CAPZA1 to be released from the barbed end of F-actin, which in turn drives the remodeling of the actin cytoskeleton. Finally, we confirmed that hypoxia increases PIP2 levels and its binding to CAPZA1 in HCC cells via the HIF-1α/RhoA/ROCK1 pathway. Thus, CAPZA1 and PIP2 could be therapeutic targets to inhibit the invasion and migration promoted by hypoxia in HCC cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteína de Capeamento de Actina CapZ/metabolismo , Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Hipóxia/fisiopatologia , Neoplasias Hepáticas/metabolismo , Fosfolipídeos/metabolismo , Humanos , Células Tumorais Cultivadas
9.
Sci Rep ; 7(1): 13061, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026158

RESUMO

Hyperhomocystinemia (HHcy) is known as an independent risk factor for cardiovascular disease. Our previous study showed that ginsenoside Rb1, the major active constituent of ginseng, prevents homocysteine (Hcy)-induced endothelial damage. However, the role of ginsenoside Rb1 in Hcy-induced dysfunction in endothelial progenitor cells (EPCs) remains unknown. In the study, we found that ginsenoside Rb1 reversed the Hcy-induced impairment of adhesive and migratory ability in EPCs which were significantly abolished by CXCR4 antagonist AMD3100 and VEGFR2 inhibitor SU5416. Ginsenoside Rb1 significantly reversed Hcy-induced SDF-1 reduction in the supernatant and in the serum. Ginsenoside Rb1 reversed downregulation of SDF-1 and VEGFR2 protein expression, inhibition of p38MAPK phosphorylation induced by Hcy. Re-endothelialization in balloon-injured carotid arteries significantly increased with EPCs transplant, and was even better with Rb1 treatment. This effect was significantly abolished by AMD3100. AMD3100 also decreased the number of CM-DiI labeled EPCs in injured arteries. Here we show for the first time that Rb1 prevents Hcy-induced EPC dysfunction via VEGF/p38MAPK and SDF-1/CXCR4 activation. These findings demonstrate a novel mechanism of the action of Rb1 that may have value in prevention of HHcy associated cardiovascular disease.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Ginsenosídeos/farmacologia , Homocisteína/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Benzilaminas , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL12/sangue , Quimiocina CXCL12/metabolismo , Ciclamos , Compostos Heterocíclicos/farmacologia , Indóis/farmacologia , Masculino , Fosforilação/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/sangue
10.
Autophagy ; 13(11): 1969-1980, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933595

RESUMO

Recent studies have demonstrated that dysregulation of macroautophagy/autophagy may play a central role in the pathogenesis of neurodegenerative disorders, and the induction of autophagy protects against the toxic insults of aggregate-prone proteins by enhancing their clearance. Thus, autophagy has become a promising therapeutic target against neurodegenerative diseases. In this study, quantitative phosphoproteomic profiling together with a computational analysis was performed to delineate the phosphorylation signaling networks regulated by 2 natural neuroprotective autophagy enhancers, corynoxine (Cory) and corynoxine B (Cory B). To identify key regulators, namely, protein kinases, we developed a novel network-based algorithm of in silico Kinome Activity Profiling (iKAP) to computationally infer potentially important protein kinases from phosphorylation networks. Using this algorithm, we observed that Cory or Cory B potentially regulated several kinases. We predicted and validated that Cory, but not Cory B, downregulated a well-documented autophagy kinase, RPS6KB1/p70S6K (ribosomal protein S6 kinase, polypeptide 1). We also discovered 2 kinases, MAP2K2/MEK2 (mitogen-activated protein kinase kinase 2) and PLK1 (polo-like kinase 1), to be potentially upregulated by Cory, whereas the siRNA-mediated knockdown of Map2k2 and Plk1 significantly inhibited Cory-induced autophagy. Furthermore, Cory promoted the clearance of Alzheimer disease-associated APP (amyloid ß [A4] precursor protein) and Parkinson disease-associated SNCA/α-synuclein (synuclein, α) by enhancing autophagy, and these effects were dramatically diminished by the inhibition of the kinase activities of MAP2K2 and PLK1. As a whole, our study not only developed a powerful method for the identification of important regulators from the phosphoproteomic data but also identified the important role of MAP2K2 and PLK1 in neuronal autophagy.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Neurônios/patologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Simulação por Computador , Indóis/farmacologia , MAP Quinase Quinase 2/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Fosforilação , Proteoma/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Compostos de Espiro/farmacologia , alfa-Sinucleína/metabolismo , Quinase 1 Polo-Like
11.
Int J Mol Sci ; 18(2)2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28134846

RESUMO

Hippocampal neurogenesis plays a critical role in the formation of new neurons during learning and memory development. Attenuation of neurogenesis in the brain is one of the primary causes of dementia in Alzheimer's disease (AD), and, conversely, modulating the process of hippocampal neurogenesis benefit patients with AD. Traditional Chinese medicine (TCM), particularly herbal medicine, has been in use for thousands of years in Asia and many regions of the world for the treatment of cancer, cardiovascular diseases and neurodegenerative diseases. In this review, we summarize the role of neurotrophic factors, signal transducing factors, epigenetic modulators and neurotransmitters in neurogenesis, and we also discuss the functions of several Chinese herbs and their active molecules in activating multiple pathways involved in neurogenesis. TCM herbs target pathways such as Notch, Wnt, Sonic Hedgehog and receptor tyrosine kinase pathway, leading to activation of a signaling cascade that ultimately enhances the transcription of several important genes necessary for neurogenesis. Given these pathway activating effects, the use of TCM herbs could be an effective therapeutic strategy for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Neurogênese , Animais , Humanos , Medicina Tradicional Chinesa , Transdução de Sinais
12.
Sci Rep ; 5: 16862, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578166

RESUMO

Tianma Gouteng Yin (TGY) is a traditional Chinese medicine (TCM) decoction widely used to treat symptoms associated with typical Parkinson's disease (PD). In this study, the neuroprotective effects of water extract of TGY were tested on rotenone-intoxicated and human α-synuclein transgenic Drosophila PD models. In addition, the neuroprotective effect of TGY was also evaluated in the human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone and the rotenone intoxicated hemi-parkinsonian rats. In rotenone-induced PD models, TGY improved survival rate, alleviated impaired locomotor function of Drosophila, mitigated the loss of dopaminergic neurons in hemi-parkinsonian rats and alleviated apoptotic cell death in SH-SY5Y cells; in α-synuclein transgenic Drosophila, TGY reduced the level of α-synuclein and prevented degeneration of dopaminergic neurons. Conclusively, TGY is neuroprotective in PD models both in vivo and in vitro.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Fármacos Neuroprotetores/farmacologia , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Cromatografia Líquida , Modelos Animais de Doenças , Dopamina/metabolismo , Drosophila , Antagonismo de Drogas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Humanos , Masculino , Espectrometria de Massas , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Ratos , Rotenona/farmacologia , alfa-Sinucleína/metabolismo
13.
PLoS One ; 9(3): e92954, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24671102

RESUMO

Huanglian-Jie-Du-Tang (HLJDT) is a famous traditional Chinese herbal formula that has been widely used clinically to treat cerebral ischemia. Recently, we found that berberine, a major alkaloid compound in HLJDT, reduced amyloid-ß (Aß) accumulation in an Alzheimer's disease (AD) mouse model. In this study, we compared the effects of HLJDT, four single component herbs of HLJDT (Rhizoma coptidis (RC), Radix scutellariae (RS), Cortex phellodendri (CP) and Fructus gardenia (FG)) and the modified formula of HLJDT (HLJDT-M, which is free of RS) on the regulatory processing of amyloid-ß precursor protein (APP) in an in vitro model of AD. Here we show that treatment with HLJDT-M and its components RC, CP, and the main compound berberine on N2a mouse neuroblastoma cells stably expressing human APP with the Swedish mutation (N2a-SwedAPP) significantly decreased the levels of full-length APP, phosphorylated APP at threonine 668, C-terminal fragments of APP, soluble APP (sAPP)-α and sAPPß-Swedish and reduced the generation of Aß peptide in the cell lysates of N2a-SwedAPP. HLJDT-M showed more significant APP- and Aß- reducing effects than berberine, RC or CP treatment alone. In contrast, HLJDT, its component RS and the main active compound of RS, baicalein, strongly increased the levels of all the metabolic products of APP in the cell lysates. The extract from FG, however, did not influence APP modulation. Interestingly, regular treatment of TgCRND8 APP transgenic mice with baicalein exacerbated the amyloid plaque burden, APP metabolism and Aß production. Taken together, these data provide convincing evidence that HLJDT and baicalein treatment can increase the amyloidogenic metabolism of APP which is at least partly responsible for the baicalein-mediated Aß plaque increase in the brains of TgCRND8 mice. On the other hand, HLJDT-M significantly decreased all the APP metabolic products including Aß. Further study of HLJDT-M for therapeutic use in treating AD is warranted.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/patologia , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Humanos , Espaço Intracelular/metabolismo , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
14.
J Neuroimmune Pharmacol ; 9(3): 380-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24522518

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of protein aggregates (namely Lewy bodies) in dopaminergic neurons in the substantia nigra region of the brain. Alpha-synuclein (α-syn) is the major component of Lewy bodies in PD patients, and impairment of the autophagy-lysosomal system has been linked to its accumulation. In our previous study, we identified an oxindole alkaloid Corynoxine B (Cory B), isolated from Uncaria rhynchophylla (Miq.) Jacks (Gouteng in Chinese), as a Beclin-1-dependent autophagy inducer. In this work, we show that Cory, an enantiomer of Cory B, also induces autophagy in different neuronal cell lines, including N2a and SHSY-5Y cells, which is paralleled with increased lysosomal enzyme cathepsin D. In vivo, Cory promotes the formation of autophagosomes in the fat bodies of Drosophila. By inducing autophagy, Cory promotes the clearance of wild-type and A53T α-syn in inducible PC12 cells. Interestingly, different from its enantiomer Cory B, Cory induces autophagy through the Akt/mTOR pathway as evidenced by the reduction in the levels of phospho-Akt, phospho-mTOR and phospho-p70 S6 Kinase. Collectively, our findings provide experimental evidence for developing Cory as a new autophagy enhancer from Chinese herbal medicine, which may have potential application in the prevention or treatment of PD.


Assuntos
Alcaloides/farmacologia , Autofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Autofagia/fisiologia , Linhagem Celular Tumoral , Drosophila , Humanos , Alcaloides Indólicos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
15.
Autophagy ; 10(1): 144-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24178442

RESUMO

SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD). Wild-type (WT) SNCA has been shown to impair macroautophagy in mammalian cells and in transgenic mice. In this study, we monitored the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCA(A53T) inhibits autophagy in PC12 cells in a time-dependent manner. Furthermore, we showed that SNCA binds to both cytosolic and nuclear high mobility group box 1 (HMGB1), impairs the cytosolic translocation of HMGB1, blocks HMGB1-BECN1 binding, and strengthens BECN1-BCL2 binding. Deregulation of these molecular events by SNCA overexpression leads to autophagy inhibition. Overexpression of BECN1 restores autophagy and promotes the clearance of SNCA. siRNA knockdown of Hmgb1 inhibits basal autophagy and abolishes the inhibitory effect of SNCA on autophagy while overexpression of HMGB1 restores autophagy. Corynoxine B, a natural autophagy inducer, restores the deficient cytosolic translocation of HMGB1 and autophagy in cells overexpressing SNCA, which may be attributed to its ability to block SNCA-HMGB1 interaction. Based on these findings, we propose that SNCA-induced impairment of autophagy occurs, in part, through HMGB1, which may provide a potential therapeutic target for PD.


Assuntos
Alcaloides/farmacologia , Autofagia/efeitos dos fármacos , Proteína HMGB1/metabolismo , alfa-Sinucleína/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Sobrevivência Celular , Citosol/efeitos dos fármacos , Citosol/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Alcaloides Indólicos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Células PC12 , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Fatores de Tempo
16.
Neurosci Lett ; 521(1): 76-81, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22659498

RESUMO

Chrysotoxine is a naturally occurring bibenzyl compound found in medicinal Dendrobium species. We previously reported that chrysotoxine structure-specifically suppressed 6-hydroxydopamine (6-OHDA)-induced dopaminergic cell death. Whether chrysotoxine and other structurally similar bibenzyl compounds could also inhibit the neurotoxicity of 1-methyl-4-phenyl pyridinium (MPP(+)) and rotenone has not been investigated. We showed herein that chrysotoxine inhibited MPP(+), but not rotenone, induced dopaminergic cell death in SH-SY5Y cells. The overproduction of reactive oxygen species (ROS), mitochondrial dysfunction as indexed by the decrease in membrane potential, increase in calcium concentration and NF-κB activation triggered by MPP(+) were blocked by chrysotoxine pretreatment. The imbalance between the pro-apoptotic signals (Bax, caspase-3, ERK and p38 MAPK) and the pro-survival signals (Akt/PI3K/GSK-3ß) induced by MPP(+) was partially or totally rectified by chrysotoxine. The results indicated that ROS inhibition, mitochondria protection, NF-κB modulation and regulation of multiple signals determining cell survival and cell death were involved in the protective effects of chrysotoxine against MPP(+) toxicity in SH-SY5Y cells. Given the different toxic profiles of 6-OHDA and MPP(+) as compared to rotenone, our results also indicated that DAT inhibition may partially account for the neuroprotective effects of chrysotoxine.


Assuntos
1-Metil-4-fenilpiridínio/antagonistas & inibidores , Antiparkinsonianos/farmacologia , Bibenzilas/farmacologia , Dopamina/metabolismo , Rotenona/antagonistas & inibidores , 1-Metil-4-fenilpiridínio/toxicidade , Transporte Ativo do Núcleo Celular , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Fator de Transcrição RelA/metabolismo
17.
Int Immunol ; 23(10): 613-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21846814

RESUMO

The pathogenesis of Sjögren's syndrome (SS) is poorly understood. To evaluate an autoimmunization-induced experimental SS model, we firstly observed the phenotype of lymphocyte infiltration in the enlarged submandibular gland (SG). Furthermore, significant activation of caspase-3 and a high ratio of Bax-to-Bcl-2 were detected, indicating the inflammatory apoptosis associated with developmental foci. Meanwhile, the dysregulated cytokines, such as tumor necrosis factor α, IL-1ß and IL-6 mRNA expression, were found to be over-expressed. A progressive decrease of aquaporin 5 and its subcellular translocation from apical to basal membrane in SG was found to be associated with the abnormally expressed M3 muscarinic acetylcholine receptor. This pattern was found to be similar to that seen in human SS and possibly contributed to the saliva secretion deficiency. Thus, this autoimmunization-induced model recapitulates the key features of human SS and may have potential for studying the pathogenesis of human SS.


Assuntos
Modelos Animais de Doenças , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Animais , Apoptose/imunologia , Aquaporina 5/antagonistas & inibidores , Aquaporina 5/metabolismo , Células Cultivadas , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Linfócitos/imunologia , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/patologia , Glândula Submandibular/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
18.
Phytother Res ; 25(3): 435-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20740476

RESUMO

Aggregated beta-amyloid (Aß) and elevated plasma levels of homocysteine have been implicated as critical factors in the pathogenesis of Alzheimer's disease. The neuroprotective effects and possible mechanism of four structurally similar dibenzocyclooctadiene lignans (namely schisandrin, schisantherin A, schisandrin B and schisandrin C) isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) against Aß25₋35 and homocysteine toxicity in PC12 cells was studied. Exposure of PC12 cells to 0.5 µm Aß25₋35 caused significant cell death, increased the number of apoptotic cells, elevated reactive oxygen species, increased the levels of the pro-apoptotic protein Bax and caspase-3 activation. All these effects induced by Aß25₋35 were markedly reversed by schisandrin B and schisandrin C pretreatment, while schisandrin and schisantherin A had no obvious effects. Meanwhile, schisandrin B and schisandrin C reversed homocysteine-induced cytotoxicity. The results indicated that schisandrin B and schisandrin C protected PC12 cells against Aß toxicity by attenuating ROS production and modulating the apoptotic signal pathway through Bax and caspase-3. Further structure-activity analysis of Schisandra lignans and evaluations of their neuroprotective effects using AD animal models are warranted.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Ciclo-Octanos/farmacologia , Homocisteína/toxicidade , Lignanas/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Schisandra/química , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Dioxóis , Células PC12 , Compostos Policíclicos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Neurochem Int ; 57(6): 676-89, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20708055

RESUMO

Some naturally occurring bibenzyl compounds have been reported as free radical scavengers. The present study tested our hypothesis that bibenzyl compounds may be neuroprotective against apoptosis induced by the neurotoxins. Five structurally similar bibenzyl derivatives were tested for their protective effect against 6-hydroxydopamine (6-OHDA) induced toxicity in the human neuroblastoma cell line SH-SY5Y. The results showed that one bibenzyl compound, namely chrysotoxine, significantly attenuated 6-OHDA-induced cell death. The subsequent mechanism study demonstrated that chrysotoxine significantly attenuated 6-OHDA-induced apoptosis characterized by DNA fragmentation and nuclear condensation in a dose-dependent manner. 6-OHDA-induced intracellular generation of reactive oxygen species (ROS), activation of p38 MAPK and ERK1/2, and mitochondrial dysfunctions, including the decrease of membrane potential, increase of intracellular free Ca2+, release of cytochrome c, imbalance of Bax/Bcl-2 ratio and activation of caspase-3 were strikingly attenuated by chrysotoxine pretreatment. Meanwhile, chrysotoxine counteracted NF-κB activation by blocking its translocation to the nucleus, thereby preventing up-regulation of inducible nitric oxide synthase (iNOS) and intracellular NO release. The data provide the first evidence that chrysotoxine protects SH-SY5Y cells against 6-OHDA toxicity possibly through mitochondria protection and NF-κB modulation. Chrysotoxine is thus a candidate for further evaluation of its protection against neurodegeneration in Parkinson's disease.


Assuntos
Apoptose/efeitos dos fármacos , Bibenzilas/farmacologia , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Oxidopamina/antagonistas & inibidores , Western Blotting , Linhagem Celular Tumoral , Fragmentação do DNA , Humanos , Mitocôndrias/metabolismo , Oxidopamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA