Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673916

RESUMO

Tobacco is an ideal model plant in scientific research. G-quadruplex is a guanine-rich DNA structure, which regulates transcription and translation. In this study, the prevalence and potential function of G-quadruplexes in tobacco were systematically analyzed. In tobacco genomes, there were 2,924,271,002 G-quadruplexes in the nuclear genome, 430,597 in the mitochondrial genome, and 155,943 in the chloroplast genome. The density of the G-quadruplex in the organelle genome was higher than that in the nuclear genome. G-quadruplexes were abundant in the transcription regulatory region of the genome, and a difference in G-quadruplex density in two DNA strands was also observed. The promoter of 60.4% genes contained at least one G-quadruplex. Compared with up-regulated differentially expressed genes (DEGs), the G-quadruplex density in down-regulated DEGs was generally higher under drought stress and salt stress. The G-quadruplex formed by simple sequence repeat (SSR) and its flanking sequence in the promoter region of the NtBBX (Nitab4.5_0002943g0010) gene might enhance the drought tolerance of tobacco. This study lays a solid foundation for further research on G-quadruplex function in tobacco and other plants.


Assuntos
Quadruplex G , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Nicotiana , Estresse Fisiológico , Nicotiana/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Secas , Estresse Salino/genética
2.
Sci Rep ; 14(1): 5257, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438470

RESUMO

Nuclear factor Y (NF-Y) gene family is an important transcription factor composed of three subfamilies of NF-YA, NF-YB and NF-YC, which is involved in plant growth, development and stress response. In this study, 63 tobacco NF-Y genes (NtNF-Ys) were identified in Nicotiana tabacum L., including 17 NtNF-YAs, 30 NtNF-YBs and 16 NtNF-YCs. Phylogenetic analysis revealed ten pairs of orthologues from tomato and tobacco and 25 pairs of paralogues from tobacco. The gene structure of NtNF-YAs exhibited similarities, whereas the gene structure of NtNF-YBs and NtNF-YCs displayed significant differences. The NtNF-Ys of the same subfamily exhibited a consistent distribution of motifs and protein 3D structure. The protein interaction network revealed that NtNF-YC12 and NtNF-YC5 exhibited the highest connectivity. Many cis-acting elements related to light, stress and hormone response were found in the promoter of NtNF-Ys. Transcriptome analysis showed that more than half of the NtNF-Y genes were expressed in all tissues, and NtNF-YB9/B14/B15/B16/B17/B29 were specifically expressed in roots. A total of 15, 12, 5, and 6 NtNF-Y genes were found to respond to cold, drought, salt, and alkali stresses, respectively. The results of this study will lay a foundation for further study of NF-Y genes in tobacco and other Solanaceae plants.


Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Fator de Ligação a CCAAT/genética
3.
Nat Commun ; 14(1): 4580, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516774

RESUMO

RAF-family kinases are activated by recruitment to the plasma membrane by GTP-bound RAS, whereupon they initiate signaling through the MAP kinase cascade. Prior structural studies of KRAS with RAF have focused on the isolated RAS-binding and cysteine-rich domains of RAF (RBD and CRD, respectively), which interact directly with RAS. Here we describe cryo-EM structures of a KRAS bound to intact BRAF in an autoinhibited state with MEK1 and a 14-3-3 dimer. Analysis of this KRAS/BRAF/MEK1/14-3-3 complex reveals KRAS bound to the RAS-binding domain of BRAF, captured in two orientations. Core autoinhibitory interactions in the complex are unperturbed by binding of KRAS and in vitro activation studies confirm that KRAS binding is insufficient to activate BRAF, absent membrane recruitment. These structures illustrate the separability of binding and activation of BRAF by RAS and suggest stabilization of this pre-activation intermediate as an alternative therapeutic strategy to blocking binding of KRAS.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Microscopia Crioeletrônica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Membrana Celular , Sistema de Sinalização das MAP Quinases
4.
Nature ; 616(7957): 590-597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991122

RESUMO

Gasdermins (GSDMs) are pore-forming proteins that play critical roles in host defence through pyroptosis1,2. Among GSDMs, GSDMB is unique owing to its distinct lipid-binding profile and a lack of consensus on its pyroptotic potential3-7. Recently, GSDMB was shown to exhibit direct bactericidal activity through its pore-forming activity4. Shigella, an intracellular, human-adapted enteropathogen, evades this GSDMB-mediated host defence by secreting IpaH7.8, a virulence effector that triggers ubiquitination-dependent proteasomal degradation of GSDMB4. Here, we report the cryogenic electron microscopy structures of human GSDMB in complex with Shigella IpaH7.8 and the GSDMB pore. The structure of the GSDMB-IpaH7.8 complex identifies a motif of three negatively charged residues in GSDMB as the structural determinant recognized by IpaH7.8. Human, but not mouse, GSDMD contains this conserved motif, explaining the species specificity of IpaH7.8. The GSDMB pore structure shows the alternative splicing-regulated interdomain linker in GSDMB as a regulator of GSDMB pore formation. GSDMB isoforms with a canonical interdomain linker exhibit normal pyroptotic activity whereas other isoforms exhibit attenuated or no pyroptotic activity. Overall, this work sheds light on the molecular mechanisms of Shigella IpaH7.8 recognition and targeting of GSDMs and shows a structural determinant in GSDMB critical for its pyroptotic activity.


Assuntos
Proteínas de Bactérias , Gasderminas , Proteínas Citotóxicas Formadoras de Poros , Animais , Humanos , Camundongos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Sequência Conservada , Microscopia Crioeletrônica , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Piroptose , Shigella , Especificidade da Espécie , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestrutura
5.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203470

RESUMO

Sauropus androgynus (S. androgynus) (2n = 4x = 52) is one of the most popular functional leafy vegetables in South and Southeast Asia. With its rich nutritional and pharmaceutical values, it has traditionally had widespread use for dietary and herbal purposes. Here, the genome of S. androgynus was sequenced and assembled, revealing a genome size of 1.55 Gb with 26 pseudo-chromosomes. Phylogenetic analysis traced back the divergence of Sauropus from Phyllanthus to approximately 29.67 million years ago (Mya). Genome analysis revealed that S. androgynus polyploidized around 20.51 Mya and shared a γ event about 132.95 Mya. Gene function analysis suggested that the expansion of pathways related to phloem development, lignin biosynthesis, and photosynthesis tended to result in the morphological differences among species within the Phyllanthaceae family, characterized by varying ploidy levels. The high accumulation of ascorbic acid in S. androgynus was attributed to the high expression of genes associated with the L-galactose pathway and recycling pathway. Moreover, the expanded gene families of S. androgynus exhibited multiple biochemical pathways associated with its comprehensive pharmacological activity, geographic adaptation and distinctive pleasurable flavor. Altogether, our findings represent a crucial genomic asset for S. androgynus, casting light on the intricate ploidy within the Phyllanthaceae family.


Assuntos
Malpighiales , Poliploidia , Filogenia , Ploidias , Ácido Ascórbico
6.
Genes (Basel) ; 13(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36292726

RESUMO

B-box (BBX) is a zinc finger transcription factor, which is involved in regulating the growth and development of plants and resisting various stresses. In this study, 43 NtBBX genes were identified and divided into five subgroups in tobacco. The members in each subgroup had similar characteristics. The promoter region of NtBBX genes had cis-acting elements related to light response, hormone regulation and stress response. Transcriptome analysis showed that NtBBX30 was significantly up-regulated, and NtBBX12, NtBBX13, NtBBX16 and NtBBX17 were significantly down-regulated under abiotic stresses. The NtBBX genes also responded to the infection of Ralstonia solanacearum. NtBBX9, NtBBX1, NtBBX15 and NtBBX17 showed the greatest response under stresses. The NtBBX genes are expressed in various degrees under different tissues. This research will provide a solid foundation for further study of the biological function of NtBBX genes in tobacco.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Hormônios
7.
Blood Purif ; 51(2): 171-181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34175850

RESUMO

BACKGROUND: Erythropoiesis-stimulating agents (ESAs) constitute an important treatment option for anemia in hemodialysis (HD) patients. We investigated the relationships among the dosage of ESA, erythropoietin resistance index (ERI) scores, and mortality in Chinese MHD patients. METHODS: This multicenter observational retrospective study included MHD patients from 16 blood purification centers (n = 824) who underwent HD in 2011-2015 and were followed up until December 31, 2016. We collected demographic variables, HD parameters, laboratory values, and ESA dosages. Patients were grouped into quartiles according to ESA dosage to study the effect of ESA dosage on all-cause mortality. The ERI was calculated as follows: ESA (IU/week)/weight (kg)/hemoglobin levels (g/dL). We also compared outcomes among the patients stratified into quartiles according to ERI scores. We used the Cox proportional hazards model to measure the relationships between the ESA dosage, ERI scores, and all-cause mortality. Using propensity score matching, we compared mortality between groups according to ERI scores, classified as either > or ≤12.80. RESULTS: In total, 824 patients were enrolled in the study; 200 (24.3%) all-cause deaths occurred within the observation period. Kaplan-Meier analyses showed that patients administered high dosages of ESAs had significantly worse survival than those administered low dosages of ESAs. A multivariate Cox regression identified that high dosages of ESAs could significantly predict mortality (ESA dosage >10,000.0 IU/week, HR = 1.59, 95% confidence intervals (CIs) (1.04, 2.42), and p = 0.031). Our analysis also indicated a significant increase in the risk of mortality in patients with high ERI scores. Propensity score matching-analyses confirmed that ERI > 12.80 could significantly predict mortality (HR = 1.56, 95% CI [1.11, 2.18], and p = 0.010). CONCLUSIONS: Our data suggested that ESA dosages >10,000.0 IU/week in the first 3 months constitute an independent predictor of all-cause mortality among Chinese MHD patients. A higher degree of resistance to ESA was related to a higher risk of all-cause mortality.


Assuntos
Eritropoetina , Hematínicos , Eritropoese , Eritropoetina/uso terapêutico , Hematínicos/uso terapêutico , Humanos , Diálise Renal , Estudos Retrospectivos
8.
Science ; 374(6567): 580-585, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34554829

RESUMO

ATP-binding cassette (ABC) transporters couple adenosine 5'-triphosphate (ATP) hydrolysis to substrate transport across biological membranes. Although many are promising drug targets, their mechanisms of modulation by small-molecule inhibitors remain largely unknown. Two first-generation inhibitors of the MsbA transporter, tetrahydrobenzothiophene 1 (TBT1) and G247, induce opposite effects on ATP hydrolysis. Using single-particle cryo­electron microscopy and functional assays, we show that TBT1 and G247 bind adjacent yet separate pockets in the MsbA transmembrane domains. Two TBT1 molecules asymmetrically occupy the substrate-binding site, which leads to a collapsed inward-facing conformation with decreased distance between the nucleotide-binding domains (NBDs). By contrast, two G247 molecules symmetrically increase NBD distance in a wide inward-open state of MsbA. The divergent mechanisms of action of these MsbA inhibitors provide important insights into ABC transporter pharmacology.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Sítios de Ligação , Microscopia Crioeletrônica , Descoberta de Drogas , Imageamento Tridimensional , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas
9.
Nat Commun ; 12(1): 4687, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344901

RESUMO

Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Acilação , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Periplasma/metabolismo , Conformação Proteica , Transporte Proteico
10.
FASEB J ; 35(6): e21646, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33993568

RESUMO

Axonemal I1 dynein (dynein f) is the largest inner dynein arm in cilia and a key regulator of ciliary beating. It consists of two dynein heavy chains, and an intermediate chain/light chain (ICLC) complex. However, the structural organization of the nine ICLC subunits remains largely unknown. Here, we used biochemical and genetic approaches, and cryo-electron tomography imaging in Chlamydomonas to dissect the molecular architecture of the I1 dynein ICLC complex. Using a strain expressing SNAP-tagged IC140, tomography revealed the location of the IC140 N-terminus at the proximal apex of the ICLC structure. Mass spectrometry of a tctex2b mutant showed that TCTEX2B dynein light chain is required for the stable assembly of TCTEX1 and inner dynein arm interacting proteins IC97 and FAP120. The structural defects observed in tctex2b located these 4 subunits in the center and bottom regions of the ICLC structure, which overlaps with the location of the IC138 regulatory subcomplex, which contains IC138, IC97, FAP120, and LC7b. These results reveal the three-dimensional organization of the native ICLC complex and indicate potential protein-protein interactions that are involved in the pathway by which I1 regulates ciliary motility.


Assuntos
Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas/química , Mutação , Proteínas de Plantas/química , Chlamydomonas/crescimento & desenvolvimento , Dineínas/genética , Dineínas/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica
11.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33472934

RESUMO

Human bocavirus 1 (HBoV1) and HBoV2-4 infect children and immunocompromised individuals, resulting in respiratory and gastrointestinal infections, respectively. Using cryo-electron microscopy and image reconstruction, the HBoV2 capsid structure was determined to 2.7 Å resolution at pH 7.4 and compared to the previously determined HBoV1, HBoV3, and HBoV4 structures. Consistent with previous findings, surface variable region (VR) III of the capsid protein VP3, proposed as a host tissue-tropism determinant, was structurally similar among the gastrointestinal strains HBoV2-4, but differed from HBoV1 with its tropism for the respiratory tract. Towards understanding the entry and trafficking properties of these viruses, HBoV1 and HBoV2 were further analyzed as species representatives of the two HBoV tropisms. Their cell surface glycan-binding characteristics were analyzed, and capsid structures determined to 2.5-2.7 Å resolution at pH 5.5 and 2.6, conditions normally encountered during infection. The data showed that glycans with terminal sialic acid, galactose, GlcNAc or heparan sulfate moieties do not facilitate HBoV1 or HBoV2 cellular attachment. With respect to trafficking, conformational changes common to both viruses were observed at low pH conditions localized to the VP N-terminus under the 5-fold channel, in the surface loops VR-I and VR-V and specific side-chain residues such as cysteines and histidines. The 5-fold conformational movements provide insight into the potential mechanism of VP N-terminal dynamics during HBoV infection and side-chain modifications highlight pH-sensitive regions of the capsid.IMPORTANCE Human bocaviruses (HBoVs) are associated with disease in humans. However, the lack of an animal model and a versatile cell culture system to study their life cycle limits the ability to develop specific treatments or vaccines. This study presents the structure of HBoV2, at 2.7 Å resolution, determined for comparison to the existing HBoV1, HBoV3, and HBoV4 structures, to enable the molecular characterization of strain and genus-specific capsid features contributing to tissue tropism and antigenicity. Furthermore, HBoV1 and HBoV2 structures determined under acidic conditions provide insight into capsid changes associated with endosomal and gastrointestinal acidification. Structural rearrangements of the capsid VP N-terminus, at the base of the 5-fold channel, demonstrate a disordering of a "basket" motif as pH decreases. These observations begin to unravel the molecular mechanism of HBoV infection and provide information for control strategies.

12.
Clin Rheumatol ; 39(11): 3353-3363, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32435895

RESUMO

OBJECTIVES: This study aimed to analyse the clinical and laboratory characteristics of different pathologic classifications of lupus nephritis (LN) patients in terms of age at systemic lupus erythematosus (SLE) diagnosis and nephritis onset. METHOD: Clinical, laboratory, and pathological data of 710 LN patients diagnosed by renal biopsy at our institution between 2000 and 2018 were retrospectively analysed. Patients were divided into the different pathological classification groups; childhood-, adult- and elderly-onset SLE groups and early- and late-onset LN groups. RESULTS: Class IV occurred most frequently and had the lowest complement C3 level. There was an obvious increase in active index in class IV and class V + IV. Patients with class VI showed some clinical characteristics similar to end-stage renal disease. Patients with proliferative nephritis were younger at SLE diagnosis and had higher blood pressure, higher frequency of proteinuria and urinary erythrocyte and lower haemoglobin and complement C3. Pathologic classification between childhood-, adult- and elderly-onset SLE patients or between early- and late-onset LN patients was not significantly different. Elderly-onset SLE patients had the highest chronic index (CI), IgA, IgG and Sjögren's syndrome A antibodies and Sjögren's syndrome B antibodies rates, whereas late-onset LN patients showed significantly higher CI, haemoglobin, complement C3 and C4 but lower uric acid, IgM and IgG. CONCLUSIONS: LN patients present with different clinical and laboratory characteristics according to pathological classification, age at SLE diagnosis and nephritis onset. These results might be valuable for estimating the pathology and guiding treatment and prognosis. Key Points • Patients with proliferative nephritis have more severe immune disorders, worse renal function and stronger inflammatory state. • The elderly-onset SLE patients showed a poorer condition. • The late-onset LN patients might have a more stable status.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Adulto , Idoso , Biópsia , Criança , China , Humanos , Laboratórios , Nefrite Lúpica/diagnóstico , Estudos Retrospectivos
13.
Clin Immunol ; 215: 108389, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32245575

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multiple system involvement and positive serum autoantibodies. Lupus nephritis (LN) is the most common and serious complication of SLE, and it is the main cause of death in patients with SLE. Abnormalities in the immune system lead to LN and involve a variety of cells (T cells, B cells, macrophages, NK cells, etc.), cytokines (interleukin, tumor necrosis factor α, etc.) and their related pathways. Previous studies have shown that the interactions of genetic, epigenetic and environmental factors contribute to the pathogenesis and development of LN. In recent years, one genome-wide association study (GWAS) and a number of gene association studies have explored the susceptibility genes of LN, including immunization-, inflammation-, adhesion- and other pathway-related genes. These genes participate in or suggest the pathogenesis and progression of LN. In this review, we summarize the genetic susceptibility of LN and discuss the possible mechanism underlying the susceptibility genes of LN.

14.
Clin Immunol ; 210: 108272, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683055

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multiple system involvement and positive serum autoantibodies. Lupus nephritis (LN) is the most common and serious complication of SLE, and it is the main cause of death in patients with SLE. Abnormalities in the immune system lead to LN and involve a variety of cells (T cells, B cells, macrophages, NK cells, etc.), cytokines (interleukin, tumor necrosis factor α, etc.) and their related pathways. Previous studies have shown that the interactions of genetic, epigenetic and environmental factors contribute to the pathogenesis and development of LN. In recent years, one genome-wide association study (GWAS) and a number of gene association studies have explored the susceptibility genes of LN, including immunization-, inflammation-, adhesion- and other pathway-related genes. These genes participate in or suggest the pathogenesis and progression of LN. In this review, we summarize the genetic susceptibility of LN and discuss the possible mechanism underlying the susceptibility genes of LN.


Assuntos
Inflamação/genética , Lúpus Eritematoso Sistêmico/genética , Animais , Autoimunidade , Adesão Celular/genética , Interação Gene-Ambiente , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos
15.
Proc Natl Acad Sci U S A ; 116(46): 23152-23162, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659045

RESUMO

The nexin-dynein regulatory complex (N-DRC) in motile cilia and flagella functions as a linker between neighboring doublet microtubules, acts to stabilize the axonemal core structure, and serves as a central hub for the regulation of ciliary motility. Although the N-DRC has been studied extensively using genetic, biochemical, and structural approaches, the precise arrangement of the 11 (or more) N-DRC subunits remains unknown. Here, using cryo-electron tomography, we have compared the structure of Chlamydomonas wild-type flagella to that of strains with specific DRC subunit deletions or rescued strains with tagged DRC subunits. Our results show that DRC7 is a central linker subunit that helps connect the N-DRC to the outer dynein arms. DRC11 is required for the assembly of DRC8, and DRC8/11 form a subcomplex in the proximal lobe of the linker domain that is required to form stable contacts to the neighboring B-tubule. Gold labeling of tagged subunits determines the precise locations of the previously ambiguous N terminus of DRC4 and C terminus of DRC5. DRC4 is now shown to contribute to the core scaffold of the N-DRC. Our results reveal the overall architecture of N-DRC, with the 3 subunits DRC1/2/4 forming a core complex that serves as the scaffold for the assembly of the "functional subunits," namely DRC3/5-8/11. These findings shed light on N-DRC assembly and its role in regulating flagellar beating.


Assuntos
Chlamydomonas/metabolismo , Dineínas/metabolismo , Flagelos/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Chlamydomonas/genética , Chlamydomonas/ultraestrutura , Estrutura Quaternária de Proteína
16.
Br J Pharmacol ; 176(5): 711-724, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30515768

RESUMO

BACKGROUND AND PURPOSE: The pathogenic mechanism of autosomal dominant polycystic kidney disease (ADPKD) is unclear. Similar to tumour cells, polycystic kidney cells are primarily dependent on aerobic glycolysis for ATP production. Compared with rodents, miniature pigs are more similar to humans. This study is the first time to investigate the effects of the combination of metformin and 2-deoxyglucose (2DG) in a pig model of chronic progressive ADPKD. EXPERIMENTAL APPROACH: A miniature pig ADPKD model was established by inducible deletion of the PKD1 gene. Blood, urine and kidney biopsy specimens were collected for analysis at specific times. The renal vesicle index was analysed by three-dimensional reconstruction of CT scans. Markers of the mammalian target of rapamycin (mTOR) and ERK signalling pathways and associated metabolism were detected by Western blots and colorimetry. KEY RESULTS: The three-dimensional reconstruction of CT scans indicated a markedly lower renal vesicle index in the combination therapy group. Each drug intervention group showed a significantly lower serum creatinine and urinary protein/creatinine ratio. This treatment regimen also inhibited the activities of markers of the proliferation-related mTOR and ERK pathways, and the expression of key enzymes involved in glycolysis, as well as reducing the production of ATP and lactic acid. CONCLUSIONS AND IMPLICATIONS: This study showed that the combination of metformin and 2DG blocked the formation of renal cysts and improved the renal function in ADPKD miniature pigs. Our results indicate that the combination of metformin and 2DG may be a promising therapeutic strategy in human ADPKD.


Assuntos
Desoxiglucose/uso terapêutico , Metformina/uso terapêutico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Animais , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Rim/diagnóstico por imagem , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metformina/farmacologia , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/fisiopatologia , Suínos , Porco Miniatura , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/genética
17.
J Biol Chem ; 290(9): 5341-53, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25564608

RESUMO

Cryo-electron tomography (cryo-ET) has reached nanoscale resolution for in situ three-dimensional imaging of macromolecular complexes and organelles. Yet its current resolution is not sufficient to precisely localize or identify most proteins in situ; for example, the location and arrangement of components of the nexin-dynein regulatory complex (N-DRC), a key regulator of ciliary/flagellar motility that is conserved from algae to humans, have remained elusive despite many cryo-ET studies of cilia and flagella. Here, we developed an in situ localization method that combines cryo-ET/subtomogram averaging with the clonable SNAP tag, a widely used cell biological probe to visualize fusion proteins by fluorescence microscopy. Using this hybrid approach, we precisely determined the locations of the N and C termini of DRC3 and the C terminus of DRC4 within the three-dimensional structure of the N-DRC in Chlamydomonas flagella. Our data demonstrate that fusion of SNAP with target proteins allowed for protein localization with high efficiency and fidelity using SNAP-linked gold nanoparticles, without disrupting the native assembly, structure, or function of the flagella. After cryo-ET and subtomogram averaging, we localized DRC3 to the L1 projection of the nexin linker, which interacts directly with a dynein motor, whereas DRC4 was observed to stretch along the N-DRC base plate to the nexin linker. Application of the technique developed here to the N-DRC revealed new insights into the organization and regulatory mechanism of this complex, and provides a valuable tool for the structural dissection of macromolecular complexes in situ.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Flagelos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Algas/genética , Axonema/genética , Axonema/metabolismo , Axonema/ultraestrutura , Western Blotting , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Dineínas/genética , Flagelos/genética , Flagelos/ultraestrutura , Microscopia de Fluorescência , Modelos Moleculares , Movimento , Complexos Multiproteicos/química , Mutação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes
18.
Mol Biol Cell ; 26(4): 696-710, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540426

RESUMO

Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo-electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.


Assuntos
Axonema/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/fisiologia , Tetrahymena/metabolismo , Cílios/metabolismo , Cílios/fisiologia , Tomografia com Microscopia Eletrônica , Técnicas de Inativação de Genes , Microtúbulos/ultraestrutura , Modelos Moleculares , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetrahymena/genética , Tetrahymena/ultraestrutura
19.
Nat Commun ; 5: 5727, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25473808

RESUMO

Cilia play essential roles in normal human development and health; cilia dysfunction results in diseases such as primary ciliary dyskinesia (PCD). Despite their importance, the native structure of human cilia is unknown, and structural defects in the cilia of patients are often undetectable or remain elusive because of heterogeneity. Here we develop an approach that enables visualization of human (patient) cilia at high-resolution using cryo-electron tomography of samples obtained noninvasively by nasal scrape biopsy. We present the native 3D structures of normal and PCD-causing RSPH1-mutant human respiratory cilia in unprecedented detail; this allows comparisons of cilia structure across evolutionarily distant species and reveals the previously unknown primary defect and the heterogeneous secondary defects in RSPH1-mutant cilia. Our data provide evidence for structural and functional heterogeneity in radial spokes, suggest a mechanism for the milder RSPH1 PCD phenotype and demonstrate that cryo-electron tomography can be applied to human disease by directly imaging patient samples.


Assuntos
Cílios/ultraestrutura , Microscopia Crioeletrônica/métodos , Proteínas de Ligação a DNA/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Síndrome de Kartagener/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética
20.
J Cell Biol ; 201(2): 263-78, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23569216

RESUMO

Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella. Cryo-electron tomography of mia mutant axonemes revealed that the MIA complex was located immediately distal to the intermediate/light chain complex of I1 dynein and structurally appeared to connect with the nexin-dynein regulatory complex. In axonemes from mutants that lack both the outer dynein arms and the MIA complex, I1 dynein failed to assemble, suggesting physical interactions between these three axonemal complexes and a role for the MIA complex in the stable assembly of I1 dynein. The MIA complex appears to regulate I1 dynein and possibly outer arm dyneins, which are both essential for normal motility.


Assuntos
Movimento Celular , Chlamydomonas reinhardtii/citologia , Cílios/metabolismo , Sequência Conservada , Dineínas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Axonema/metabolismo , Sequência de Bases , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Cílios/ultraestrutura , Dineínas/química , Genes de Plantas , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nexinas de Proteases/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Sequências Repetitivas de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA