Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Tob Induc Dis ; 222024.
Artigo em Inglês | MEDLINE | ID: mdl-38832049

RESUMO

This work aims to summarize the current evidence on the toxicity and health impact of IQOS, taking into consideration the data source. On 1 June 2022, we searched PubMed, Web of Science, and Scopus databases using the terms: 'heated tobacco product', 'heat-not-burn', 'IQOS', and 'tobacco heating system'. The search was time-restricted to update a previous search conducted on 8 November 2021, on IQOS data from 2010-2021. The data source [independent, Philip Morris International (PMI), or other manufacturers] was retrieved from relevant sections of each publication. Publications were categorized into two general categories: 1) Toxicity assessments included in vitro, in vivo, and systems toxicology studies; and 2) The impact on human health included clinical studies assessing biomarkers of exposure and biomarkers of health effects. Generally, independent studies used classical in vitro and in vivo approaches, but PMI studies combined these with modeling of gene expression (i.e. systems toxicology). Toxicity assessment and health impact studies covered pulmonary, cardiovascular, and other systemic toxicity. PMI studies overall showed reduced toxicity and health risks of IQOS compared to cigarettes, but independent data did not always conform with this conclusion. This review highlights some discrepancies in IQOS risk assessment regarding methods, depth, and breadth of data collection, as well as conclusions based on the data source.

2.
Clin Epigenetics ; 15(1): 160, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821974

RESUMO

BACKGROUND: Cigarette smoking and aging are the main risk factors for pulmonary diseases, including cancer. Epigenetic aging may explain the relationship between smoking, electronic cigarette vaping, and pulmonary health. No study has examined smoking and vaping-related epigenetic aging in relation to lung biomarkers. METHODS: Lung epigenetic aging measured by DNA methylation (mAge) and its acceleration (mAA) was assessed in young (age 21-30) electronic cigarette vapers (EC, n = 14, including 3 never-smoking EC), smokers (SM, n = 16), and non-EC/non-SM (NS, n = 39). We investigated relationships of mAge estimates with chronological age (Horvath-mAge), lifespan/mortality (Grim-mAge), telomere length (TL-mAge), smoking/EC history, urinary biomarkers, lung cytokines, and transcriptome. RESULTS: Compared to NS, EC and SM had significantly older Grim-mAge, shorter TL-mAge, significantly accelerated Grim-mAge and decelerated TL-mAge. Among SM, Grim-mAA was associated with nicotine intake and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). For EC, Horvath-mAA was significantly correlated with puffs per day. Overall, cytokines (IL-1ß, IL-6, and IL-8) and 759 transcripts (651 unique genes) were significantly associated with Grim-mAA. Grim-mAA-associated genes were highly enriched in immune-related pathways and genes that play a role in the morphology and structures of cells/tissues. CONCLUSIONS: Faster lung mAge for SM is consistent with prior studies of blood. Faster lung mAge for EC compared to NS indicates possible adverse pulmonary effects of EC on biological aging. Our findings support further research, particularly on epigenetic markers, on effects of smoking and vaping on pulmonary health. Given that most EC are former smokers, further study is needed to understand unique effects of electronic cigarettes on biological aging.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Fumantes , Humanos , Adulto Jovem , Adulto , não Fumantes , Fumar/efeitos adversos , Fumar/genética , Metilação de DNA , Inflamação , Citocinas/genética , Pulmão , Biomarcadores , Expressão Gênica , Epigênese Genética
3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L568-L579, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697923

RESUMO

The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Adulto , Masculino , Feminino , Camundongos , Animais , Nicotina/toxicidade , Aerossóis e Gotículas Respiratórios , Asma/patologia , Pulmão/patologia , Pneumonia/patologia , Inflamação/patologia , Modelos Animais de Doenças , DNA Mitocondrial
4.
Metabolites ; 13(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623843

RESUMO

Obesity in children and adolescents has increased globally. Increased body mass index (BMI) during adolescence carries significant long-term adverse health outcomes, including chronic diseases such as cardiovascular disease, stroke, diabetes, and cancer. Little is known about the metabolic consequences of changes in BMI in adolescents outside of typical clinical parameters. Here, we used untargeted metabolomics to assess changing BMI in male adolescents. Untargeted metabolomic profiling was performed on urine samples from 360 adolescents using UPLC-QTOF-MS. The study includes a baseline of 235 subjects in a discovery set and 125 subjects in a validation set. Of them, a follow-up of 81 subjects (1 year later) as a replication set was studied. Linear regression analysis models were used to estimate the associations of metabolic features with BMI z-score in the discovery and validation sets, after adjusting for age, race, and total energy intake (kcal) at false-discovery-rate correction (FDR) ≤ 0.1. We identified 221 and 16 significant metabolic features in the discovery and in the validation set, respectively. The metabolites associated with BMI z-score in validation sets are glycylproline, citrulline, 4-vinylsyringol, 3'-sialyllactose, estrone sulfate, carnosine, formiminoglutamic acid, 4-hydroxyproline, hydroxyprolyl-asparagine, 2-hexenoylcarnitine, L-glutamine, inosine, N-(2-Hydroxyphenyl) acetamide glucuronide, and galactosylhydroxylysine. Of those 16 features, 9 significant metabolic features were associated with a positive change in BMI in the replication set 1 year later. Histidine and arginine metabolism were the most affected metabolic pathways. Our findings suggest that obesity and its metabolic outcomes in the urine metabolome of children are linked to altered amino acids, lipid, and carbohydrate metabolism. These identified metabolites may serve as biomarkers and aid in the investigation of obesity's underlying pathological mechanisms. Whether these features are associated with the development of obesity, or a consequence of changing BMI, requires further study.

5.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374908

RESUMO

Smokers (SM) have increased lung immune cell counts and inflammatory gene expression compared to electronic cigarette (EC) users and never-smokers (NS). The objective of this study is to further assess associations for SM and EC lung microbiomes with immune cell subtypes and inflammatory gene expression in samples obtained by bronchoscopy and bronchoalveolar lavage (n = 28). RNASeq with the CIBERSORT computational algorithm were used to determine immune cell subtypes, along with inflammatory gene expression and microbiome metatranscriptomics. Macrophage subtypes revealed a two-fold increase in M0 (undifferentiated) macrophages for SM and EC users relative to NS, with a concordant decrease in M2 (anti-inflammatory) macrophages. There were 68, 19, and 1 significantly differentially expressed inflammatory genes (DEG) between SM/NS, SM/EC users, and EC users/NS, respectively. CSF-1 and GATA3 expression correlated positively and inversely with M0 and M2 macrophages, respectively. Correlation profiling for DEG showed distinct lung profiles for each participant group. There were three bacteria genera-DEG correlations and three bacteria genera-macrophage subtype correlations. In this pilot study, SM and EC use were associated with an increase in undifferentiated M0 macrophages, but SM differed from EC users and NS for inflammatory gene expression. The data support the hypothesis that SM and EC have toxic lung effects influencing inflammatory responses, but this may not be via changes in the microbiome.

6.
Nicotine Tob Res ; 25(12): 1904-1908, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349133

RESUMO

INTRODUCTION: Although the greater popularity of electronic cigarettes (EC) among asthmatics is alarming, there is limited knowledge of the long-term consequences of EC exposure in asthmatics. AIMS AND METHODS: Mild asthmatic C57/BL6J adult male and female mice were established by intranasal insufflation with three combined allergens. The asthmatic and age and sex-matched' naïve mice were exposed to air, nicotine-free (propylene glycol [PG]/vegetable glycerin [VG]-only), or PG/VG+Nicotine, 4 hours daily for 3 months. The effects of EC exposure were accessed by measuring cytokines in bronchoalveolar lavage, periodic acid-schiff (PAS) staining, mitochondrial DNA copy numbers (mtCN), and the transcriptome in the lung. Significance was false discovery rate <0.2 for transcriptome and 0.05 for the others. RESULTS: In asthmatic mice, PG/VG+Nicotine increased PAS-positive cells and IL-13 compared to mice exposed to air and PG/VG-only. In naïve mice exposed to PG/VG+Nicotine and PG/VG-only, higher INF-γ was observed compared to mice exposed only to air. PG/VG-only and PG/VG+Nicotine had significantly higher mtCN compared to air exposure in asthmatic mice, while the opposite pattern was observed in non-asthmatic naïve mice. Different gene expression patterns were profoundly found for asthmatic mice exposed to PG/VG+Nicotine compared to PG/VG-only, including genes involved in mitochondrial dysfunction, oxidative phosphorylation, and p21-activated kinase (PAK) signaling. CONCLUSIONS: This study provides experimental evidence of the potential impact of nicotine enhancement on the long-term effects of EC in asthmatics compared to non-asthmatics. IMPLICATIONS: The findings from this study indicate the potential impact of EC in asthmatics by addressing multiple biological markers. The long-term health outcomes of EC in the susceptible group can be instrumental in supporting policymaking and educational campaigns and informing the public, healthcare providers, and EC users about the underlying risks of EC use.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Masculino , Camundongos , Feminino , Animais , Nicotina/efeitos adversos , Asma/etiologia , Pulmão , Propilenoglicol/farmacologia , Glicerol/farmacologia , Verduras
7.
EBioMedicine ; 85: 104301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215783

RESUMO

BACKGROUND: Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS: Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS: mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION: Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING: The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.


Assuntos
DNA Mitocondrial , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , DNA Mitocondrial/genética , Fumantes , Variações do Número de Cópias de DNA , Biomarcadores , Metilação de DNA , Pulmão , Transcrição Gênica
8.
Cancer Prev Res (Phila) ; 15(7): 435-446, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35667088

RESUMO

The microbiome has increasingly been linked to cancer. Little is known about the lung and oral cavity microbiomes in smokers, and even less for electronic cigarette (EC) users, compared with never-smokers. In a cross-sectional study (n = 28) of smokers, EC users, and never-smokers, bronchoalveolar lavage and saliva samples underwent metatranscriptome profiling to examine associations with lung and oral microbiomes. Pairwise comparisons assessed differentially abundant bacteria species. Total bacterial load was similar between groups, with no differences in bacterial diversity across lung microbiomes. In lungs, 44 bacteria species differed significantly (FDR < 0.1) between smokers/never-smokers, with most decreased in smokers. Twelve species differed between smokers/EC users, all decreased in smokers of which Neisseria sp. KEM232 and Curvibacter sp. AEP1-3 were observed. Among the top five decreased species in both comparisons, Neisseria elongata, Neisseria sicca, and Haemophilus parainfluenzae were observed. In the oral microbiome, 152 species were differentially abundant for smokers/never-smokers, and 17 between smokers/electronic cigarette users, but only 21 species were differentially abundant in both the lung and oral cavity. EC use is not associated with changes in the lung microbiome compared with never-smokers, indicating EC toxicity does not affect microbiota. Statistically different bacteria in smokers compared with EC users and never-smokers were almost all decreased, potentially due to toxic effects of cigarette smoke. The low numbers of overlapping oral and lung microbes suggest that the oral microbiome is not a surrogate for analyzing smoking-related effects in the lung. PREVENTION RELEVANCE: The microbiome affects cancer and other disease risk. The effects of e-cig usage on the lung microbiome are essentially unknown. Given the importance of lung microbiome dysbiosis populated by oral species which have been observed to drive lung cancer progression, it is important to study effects of e-cig use on microbiome.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Vaping , Bactérias , Estudos Transversais , Pulmão , Saliva
9.
Clin Epigenetics ; 13(1): 188, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635168

RESUMO

BACKGROUND: Racial/ethnic disparities in health reflect a combination of genetic and environmental causes, and DNA methylation may be an important mediator. We compared in an exploratory manner the blood DNA methylome of Japanese Americans (JPA) versus European Americans (EUA). METHODS: Genome-wide buffy coat DNA methylation was profiled among healthy Multiethnic Cohort participant women who were Japanese (JPA; n = 30) or European (EUA; n = 28) Americans aged 60-65. Differentially methylated CpGs by race/ethnicity (DM-CpGs) were identified by linear regression (Bonferroni-corrected P < 0.1) and analyzed in relation to corresponding gene expression, a priori selected single nucleotide polymorphisms (SNPs), and blood biomarkers of inflammation and metabolism using Pearson or Spearman correlations (FDR < 0.1). RESULTS: We identified 174 DM-CpGs with the majority of hypermethylated in JPA compared to EUA (n = 133), often in promoter regions (n = 48). Half (51%) of the genes corresponding to the DM-CpGs were involved in liver function and liver disease, and the methylation in nine genes was significantly correlated with gene expression for DM-CpGs. A total of 156 DM-CpGs were associated with rs7489665 (SH2B1). Methylation of DM-CpGs was correlated with blood levels of the cytokine MIP1B (n = 146). We confirmed some of the DM-CpGs in the TCGA adjacent non-tumor liver tissue of Asians versus EUA. CONCLUSION: We found a number of differentially methylated CpGs in blood DNA between JPA and EUA women with a potential link to liver disease, specific SNPs, and systemic inflammation. These findings may support further research on the role of DNA methylation in mediating some of the higher risk of liver disease among JPA.


Assuntos
Povo Asiático/etnologia , Metilação de DNA/genética , Etnicidade/genética , População Branca/etnologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/sangue , Idoso , Povo Asiático/estatística & dados numéricos , Estudos de Coortes , Metilação de DNA/fisiologia , Etnicidade/estatística & dados numéricos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Japão/etnologia , Masculino , Pessoa de Meia-Idade , Estados Unidos/etnologia , População Branca/estatística & dados numéricos
10.
EBioMedicine ; 60: 102982, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32919101

RESUMO

BACKGROUND: An outbreak of E-cigarette or Vaping Product Use-Associated Lung Injury (EVALI) with significant morbidity and mortality was reported in 2019. While most patients with EVALI report vaping tetrahydrocannabinol (THC) oils contaminated with vitamin E acetate, a subset report only vaping with nicotine-containing electronic cigarettes (e-cigs). Whether or not e-cigs cause EVALI, the outbreak highlights the need for identifying long term health effects of e-cigs. EVALI pathology includes alveolar damage, pneumonitis and/or organizing pneumonia, often with lipid-laden macrophages (LLM). We assessed LLM in the lungs of healthy smokers, e-cig users, and never-smokers as a potential marker of e-cig toxicity and EVALI. METHODS: A cross-sectional study using bronchoscopy was conducted in healthy smokers, e-cig users, and never-smokers (n = 64). LLM, inflammatory cell counts, and cytokines were determined in bronchial alveolar fluids (BAL). E-cig users included both never-smokers and former light smokers. FINDINGS: High LLM was found in the lungs of almost all smokers and half of the e-cig users, but not those of never-smokers. LLM were not related to THC exposure or smoking history. LLM were significantly associated with inflammatory cytokines IL-4 and IL-10 in e-cig users, but not smoking-related cytokines. INTERPRETATION: This is the first report of lung LLM comparing apparently healthy smokers, e-cig users, and never-smokers. LLM are not a specific marker for EVALI given the frequent positivity in smokers; whether LLMs are a marker of lung inflammation in some e-cig users requires further study. FUNDING: The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Espumosas/patologia , Lesão Pulmonar/epidemiologia , Lesão Pulmonar/etiologia , Vaping/efeitos adversos , Adulto , Biomarcadores , Estudos Transversais , Citocinas/metabolismo , Exposição Ambiental/efeitos adversos , Feminino , Células Espumosas/imunologia , Células Espumosas/metabolismo , Voluntários Saudáveis , Humanos , Imuno-Histoquímica , Mediadores da Inflamação , Lesão Pulmonar/metabolismo , Masculino , não Fumantes , Vigilância em Saúde Pública , Fumar , Adulto Jovem
11.
J Biol Chem ; 295(48): 16328-16341, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32887795

RESUMO

Acute kidney injury (AKI) is a common clinical condition associated with diverse etiologies and abrupt loss of renal function. In patients with sepsis, rhabdomyolysis, cancer, and cardiovascular disorders, the underlying disease or associated therapeutic interventions can cause hypoxia, cytotoxicity, and inflammatory insults to renal tubular epithelial cells (RTECs), resulting in the onset of AKI. To uncover stress-responsive disease-modifying genes, here we have carried out renal transcriptome profiling in three distinct murine models of AKI. We find that Vgf nerve growth factor inducible gene up-regulation is a common transcriptional stress response in RTECs to ischemia-, cisplatin-, and rhabdomyolysis-associated renal injury. The Vgf gene encodes a secretory peptide precursor protein that has critical neuroendocrine functions; however, its role in the kidneys remains unknown. Our functional studies show that RTEC-specific Vgf gene ablation exacerbates ischemia-, cisplatin-, and rhabdomyolysis-associated AKI in vivo and cisplatin-induced RTEC cell death in vitro Importantly, aggravation of cisplatin-induced renal injury caused by Vgf gene ablation is partly reversed by TLQP-21, a Vgf-derived peptide. Finally, in vitro and in vivo mechanistic studies showed that injury-induced Vgf up-regulation in RTECs is driven by the transcriptional regulator Sox9. These findings reveal a crucial downstream target of the Sox9-directed transcriptional program and identify Vgf as a stress-responsive protective gene in kidney tubular epithelial cells.


Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Fatores de Crescimento Neural/biossíntese , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Células Epiteliais/patologia , Túbulos Renais/patologia , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Fatores de Transcrição SOX9/genética
12.
Front Immunol ; 11: 461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265920

RESUMO

Rationale: Caspase-1 is a zymogen whose activation predominantly depends upon the assembly of ASC monomers into insoluble prion-like polymers (specks). ASC polymers support caspase-1 dimer formation inducing a proximity mediated auto-activation of caspase-1. Therefore, the amount and nature of ASC monomers and polymers in lung bronchoalveolar lavage fluid (BALF) might serve as a marker of lung inflammasome activity. Objectives: To determine whether lung ASC concentrations or oligomerization status predicts lung function or activity of lung inflammation. Methods: BALF ASC amount and oligomerization status was studied in three distinct cohorts: (1) young healthy non-smokers, vapers and smokers; (2) healthy HIV+ smokers who underwent detailed lung function studies; and (3) hospitalized patients with suspected pneumonia. We quantified cell free BALF ASC levels by ELISA and immunoblot. Oligomers (i.e., ASC specks) were identified by chemical crosslinking and ability to sediment with centrifugation. Measurement and Main Results: ASC levels are significantly higher in lung lining fluid than in plasma as well as higher in smoker lungs compared to non-smoker lungs. In this context, ASC levels correlate with macrophage numbers, smoking intensity and loss of lung diffusion capacity in a well-characterized cohort of healthy HIV+ smokers. However, only monomeric ASC was found in our BALF samples from all subjects, including patients with lung infections. Conclusions: Even though, most, if not all, extracellular ASC in BALF exists in the soluble, monomeric form, monomeric ASC concentrations still reflect the inflammatory status of the lung microenvironment and correlate with loss of lung function.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Pulmão/metabolismo , Macrófagos/imunologia , Plasma/metabolismo , Adulto , Lavagem Broncoalveolar , Microambiente Celular , Fumar Cigarros/efeitos adversos , Feminino , Humanos , Pulmão/patologia , Masculino , Pneumonia , Multimerização Proteica , Testes de Função Respiratória , Células THP-1 , Regulação para Cima
13.
Cancer Epidemiol Biomarkers Prev ; 29(2): 443-451, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31848205

RESUMO

BACKGROUND: Nicotine-containing electronic cigarette (e-cig) use has become widespread. However, understanding the biological impact of e-cigs compared with smoking on the lung is needed. There are major gaps in knowledge for chronic effects and for an etiology to recent acute lung toxicity leading to death among vapers. METHODS: We conducted bronchoscopies in a cross-sectional study of 73 subjects (42 never-smokers, 15 e-cig users, and 16 smokers). Using bronchoalveolar lavage and brushings, we examined lung inflammation by cell counts, cytokines, genome-wide gene expression, and DNA methylation. RESULTS: There were statistically significant differences among never-smokers, e-cig users, and smokers for inflammatory cell counts and cytokines (FDR q < 0.1). The e-cig users had values intermediate between smokers and never-smokers, with levels for most of the biomarkers more similar to never-smokers. For differential gene expression and DNA methylation, e-cig users also more like never-smokers; many of these genes corresponded to smoking-related pathways, including those for xenobiotic metabolism, aryl hydrocarbon receptor signaling, and oxidative stress. Differentially methylated genes were correlated with changes in gene expression, providing evidence for biological effects of the methylation associations. CONCLUSIONS: These data indicate that e-cigs are associated with less toxicity than cigarettes for smoking-related pathways. What is unknown may be unique effects for e-cigs not measured herein, and a comparison of smokers completely switching to e-cigs compared with former smokers. Clinical trials for smokers switching to e-cigs who undergo serial bronchoscopy and larger cross-sectional studies of former smokers with and without e-cig use, and for e-cigs who relapse back to smoking, are needed. IMPACT: These data can be used for product regulation and for informing tobacco users considering or using e-cigs. What is unknown may be unique effects for e-cigs not measured herein, and clinical trials with serial bronchoscopy underway can demonstrate a direct relationship for changes in lung biomarkers.


Assuntos
Broncoscopia/estatística & dados numéricos , Fumar Cigarros/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Pulmão/patologia , não Fumantes/estatística & dados numéricos , Fumantes/estatística & dados numéricos , Adulto , Biomarcadores/análise , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Fumar Cigarros/patologia , Citocinas/análise , Citocinas/metabolismo , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Masculino , Adulto Jovem
14.
Cancer Prev Res (Phila) ; 13(2): 145-152, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31619441

RESUMO

Electronic cigarette (e-cig) use is continuing to increase, particularly among youth never-smokers, and is used by some smokers to quit. The acute and chronic toxicity of e-cig use is unclear generally in the context of increasing reports of inflammatory-type pneumonia in some e-cig users. To assess lung effects of e-cigs without nicotine or flavors, we conducted a pilot study with serial bronchoscopies over 4 weeks in 30 never-smokers, randomized either to a 4-week intervention with the use of e-cigs containing only 50% propylene glycol (PG) and 50% vegetable glycerine or to a no-use control group. Compliance to the e-cig intervention was assessed by participants sending daily puff counts and by urinary PG. Inflammatory cell counts and cytokines were determined in bronchoalveolar lavage (BAL) fluids. Genome-wide expression, miRNA, and mRNA were determined from bronchial epithelial cells. There were no significant differences in changes of BAL inflammatory cell counts or cytokines between baseline and follow-up, comparing the control and e-cig groups. However, in the intervention but not the control group, change in urinary PG as a marker of e-cig use and inhalation was significantly correlated with change in cell counts (cell concentrations, macrophages, and lymphocytes) and cytokines (IL8, IL13, and TNFα), although the absolute magnitude of changes was small. There were no significant changes in mRNA or miRNA gene expression. Although limited by study size and duration, this is the first experimental demonstration of an impact of e-cig use on inflammation in the human lung among never-smokers.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/efeitos adversos , Pulmão/efeitos dos fármacos , Propilenoglicol/efeitos adversos , Administração por Inalação , Adulto , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Broncoscopia , Estudos Transversais , Citocinas/genética , Citocinas/imunologia , Ex-Fumantes , Feminino , Perfilação da Expressão Gênica , Glicerol/administração & dosagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Masculino , não Fumantes , Projetos Piloto , Propilenoglicol/administração & dosagem , Propilenoglicol/urina , Fumantes , Fumar/efeitos adversos , Fumar/terapia , Fumar/urina , Abandono do Hábito de Fumar/métodos , Adulto Jovem
15.
N Engl J Med ; 382(8): 697-705, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860793

RESUMO

BACKGROUND: The causative agents for the current national outbreak of electronic-cigarette, or vaping, product use-associated lung injury (EVALI) have not been established. Detection of toxicants in bronchoalveolar-lavage (BAL) fluid from patients with EVALI can provide direct information on exposure within the lung. METHODS: BAL fluids were collected from 51 patients with EVALI in 16 states and from 99 healthy participants who were part of an ongoing study of smoking involving nonsmokers, exclusive users of e-cigarettes or vaping products, and exclusive cigarette smokers that was initiated in 2015. Using the BAL fluid, we performed isotope dilution mass spectrometry to measure several priority toxicants: vitamin E acetate, plant oils, medium-chain triglyceride oil, coconut oil, petroleum distillates, and diluent terpenes. RESULTS: State and local health departments assigned EVALI case status as confirmed for 25 patients and as probable for 26 patients. Vitamin E acetate was identified in BAL fluid obtained from 48 of 51 case patients (94%) in 16 states but not in such fluid obtained from the healthy comparator group. No other priority toxicants were found in BAL fluid from the case patients or the comparator group, except for coconut oil and limonene, which were found in 1 patient each. Among the case patients for whom laboratory or epidemiologic data were available, 47 of 50 (94%) had detectable tetrahydrocannabinol (THC) or its metabolites in BAL fluid or had reported vaping THC products in the 90 days before the onset of illness. Nicotine or its metabolites were detected in 30 of 47 of the case patients (64%). CONCLUSIONS: Vitamin E acetate was associated with EVALI in a convenience sample of 51 patients in 16 states across the United States. (Funded by the National Cancer Institute and others.).


Assuntos
Lesão Pulmonar Aguda/patologia , Líquido da Lavagem Broncoalveolar/química , Sistemas Eletrônicos de Liberação de Nicotina , Vaping/efeitos adversos , Vitamina E/análise , Lesão Pulmonar Aguda/etiologia , Adolescente , Adulto , Idoso , Fumar Cigarros , Óleo de Coco/análise , Feminino , Humanos , Limoneno/análise , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem
17.
Allergy ; 74(3): 535-548, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30288751

RESUMO

BACKGROUND: The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment. METHODS: We employed a murine asthma model, in which mice were treated by intranasal insufflation with allergens for 2-8 weeks. We used both a pharmacologic approach using a highly specific FoxO1 inhibitor and genetic approaches using FoxO1 knockout mice (FoxO1fl/fl LysMcre). Cytokine level in biological fluids was measured by ELISA and the expression of encoding molecules by NanoString assay and qRT-PCR. RESULTS: We show that the levels of FoxO1 gene are significantly elevated in the airway macrophages of patients with mild asthma in response to subsegmental bronchial allergen challenge. Transcription factor FoxO1 regulates a pro-asthmatic phenotype of lung macrophages that is involved in the development and progression of chronic allergic airway disease. We have shown that inhibition of FoxO1 induced phenotypic conversion of lung macrophages and downregulates pro-asthmatic and pro-fibrotic gene expression by macrophages, which contribute to airway inflammation and airway remodeling in allergic asthma. CONCLUSION: Targeting FoxO1 with its downstream regulator IRF4 is a novel therapeutic target for controlling allergic inflammation and potentially reversing fibrotic airway remodeling.


Assuntos
Asma/etiologia , Asma/metabolismo , Proteína Forkhead Box O1/genética , Regulação Neoplásica da Expressão Gênica , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transferência Adotiva , Alérgenos/imunologia , Animais , Asma/diagnóstico , Asma/terapia , Testes de Provocação Brônquica , Broncoscopia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1/metabolismo , Humanos , Camundongos , Células Th2/imunologia , Células Th2/metabolismo
18.
Methods Mol Biol ; 1856: 219-231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30178254

RESUMO

Cancer is largely an aging disease. Accelerated biological aging may be the strongest predictor of cancer and other chronic disease risks. In the absence of reliable and quantifiable biomarkers of aging to date, it has long been observed that tumorigenesis shares distinct epigenetic alterations with the aging process. Recently, epigenetic age estimates have been developed based on the availability of genome-wide DNA methylation profiles, by applying in the prediction formula the methylation level at a subset of highly predictive methylation sites, called epigenetic clock. These DNA methylation age estimates have produced remarkably strong correlations with chronological age, with a small deviation and high reproducibility across different age groups and study populations. Moreover, an increasing number of epidemiologic studies have demonstrated an independent association of DNA methylation age or the extent of acceleration with mortality and various aging-related conditions, even after accounting for differences in chronological age and other risk factors. Although epigenetic profiles are known to be tissue-specific, both target tissue- and multiple tissue-derived estimates appear to perform well to capture what is thought to be the cumulative epigenetic drift that represents a multifactorial degenerative process across tissues and organisms. Further refinement of the epigenetic age estimates is anticipated over time to accommodate a better technological coverage of the methylome and a better understanding of the biology underlying predictive regions. Epidemiologic principles will remain critical for the evaluation of research findings involving, for example, different study populations, design, follow-up time, and quality of covariate data. Overall, the epigenetic age estimates are an exciting development with useful implications for biomedical research of healthy aging and disease prevention and control.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Biomarcadores , Ilhas de CpG , Estudos Epidemiológicos , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Longevidade/genética , Fenótipo , Sensibilidade e Especificidade , Transcriptoma
20.
Cancer Epidemiol Biomarkers Prev ; 26(8): 1175-1191, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28642230

RESUMO

The use of electronic cigarettes (e-cigs) is increasing rapidly, but their effects on lung toxicity are largely unknown. Smoking is a well-established cause of lung cancer and respiratory disease, in part through inflammation. It is plausible that e-cig use might affect similar inflammatory pathways. E-cigs are used by some smokers as an aid for quitting or smoking reduction, and by never smokers (e.g., adolescents and young adults). The relative effects for impacting disease risk may differ for these groups. Cell culture and experimental animal data indicate that e-cigs have the potential for inducing inflammation, albeit much less than smoking. Human studies show that e-cig use in smokers is associated with substantial reductions in blood or urinary biomarkers of tobacco toxicants when completely switching and somewhat for dual use. However, the extent to which these biomarkers are surrogates for potential lung toxicity remains unclear. The FDA now has regulatory authority over e-cigs and can regulate product and e-liquid design features, such as nicotine content and delivery, voltage, e-liquid formulations, and flavors. All of these factors may impact pulmonary toxicity. This review summarizes current data on pulmonary inflammation related to both smoking and e-cig use, with a focus on human lung biomarkers. Cancer Epidemiol Biomarkers Prev; 26(8); 1175-91. ©2017 AACR.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/métodos , Fumar/efeitos adversos , Fumar Tabaco/efeitos adversos , Feminino , Humanos , Inflamação , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA