Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(6): 4804-4818, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466231

RESUMO

Proteolysis-targeting chimera (PROTAC) is a powerful technology that can effectively trigger the degradation of target proteins. The intricate interplay among various factors leads to a heterogeneous drug response, bringing about significant challenges in comprehending drug mechanisms. Our study applied data-independent acquisition-based mass spectrometry to multidimensional proteome profiling of PROTAC (DIA-MPP) to uncover the efficacy and sensitivity of the PROTAC compound. We profiled the signal transducer and activator of transcription 3 (STAT3) PROTAC degrader in six leukemia and lymphoma cell lines under multiple conditions, demonstrating the pharmacodynamic properties and downstream biological responses. Through comparison between sensitive and insensitive cell lines, we revealed that STAT1 can be regarded as a biomarker for STAT3 PROTAC degrader, which was validated in cells, patient-derived organoids, and mouse models. These results set an example for a comprehensive description of the multidimensional PROTAC pharmacodynamic response and PROTAC drug sensitivity biomarker exploration.


Assuntos
Proteoma , Fator de Transcrição STAT3 , Animais , Camundongos , Humanos , Proteoma/metabolismo , Proteólise , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Biomarcadores/metabolismo
2.
Natl Sci Rev ; 10(8): nwad167, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575948

RESUMO

Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.

3.
Proteomics ; 23(3-4): e2100407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35689503

RESUMO

Phosphorylation is one of the most common post-translational modifications (PTMs) and is closely related to protein activity and function, playing a critical role during cancer development. Quantitative phosphoproteomic strategies have been widely used to study the underlying mechanisms of cancer progression or drug resistance. In this report, we analyzed the association of phosphosite levels originated from our previously reported proteogenomic study in hepatocellular carcinoma (HCC) with clinical parameters, including prognosis, recurrence, and Tumor-Node-Metastasis (TNM) stages. By using both the log-rank test and univariate Cox proportional hazards regression analysis, we found that the abundance levels of 1712 phosphosites were associated with prognosis and those of 393 phosphosites associated with recurrence. Besides, 692 phosphosites had different abundance levels among TNM stages (I, II, III+IV) by Analysis of Variance (ANOVA) test. Gene ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using proteins with these statistically significant phosphosites. In conclusion, we provided a dataset resource for clinically associated phosphosites in HCC, which may be beneficial to liver cancer related basic research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Prognóstico
4.
Cancer Cell ; 40(1): 70-87.e15, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971568

RESUMO

We performed proteogenomic characterization of intrahepatic cholangiocarcinoma (iCCA) using paired tumor and adjacent liver tissues from 262 patients. Integrated proteogenomic analyses prioritized genetic aberrations and revealed hallmarks of iCCA pathogenesis. Aflatoxin signature was associated with tumor initiation, proliferation, and immune suppression. Mutation-associated signaling profiles revealed that TP53 and KRAS co-mutations may contribute to iCCA metastasis via the integrin-FAK-SRC pathway. FGFR2 fusions activated the Rho GTPase pathway and could be a potential source of neoantigens. Proteomic profiling identified four patient subgroups (S1-S4) with subgroup-specific biomarkers. These proteomic subgroups had distinct features in prognosis, genetic alterations, microenvironment dysregulation, tumor microbiota composition, and potential therapeutics. SLC16A3 and HKDC1 were further identified as potential prognostic biomarkers associated with metabolic reprogramming of iCCA cells. This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in iCCA.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Fígado/patologia , Proteogenômica , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Humanos , Mutação/genética , Prognóstico , Proteogenômica/métodos , Proteômica , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA