Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant J ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003593

RESUMO

Polyploidy is a prominent driver of plant diversification, accompanied with dramatic chromosomal rearrangement and epigenetic changes that affect gene expression. How chromatin interactions within and between subgenomes adapt to ploidy transition remains poorly understood. We generate open chromatin interaction maps for natural hexaploid wheat (AABBDD), extracted tetraploid wheat (AABB), diploid wheat progenitor Aegilops tauschii (DD) and resynthesized hexaploid wheat (RHW, AABBDD). Thousands of intra- and interchromosomal loops are de novo established or disappeared in AB subgenomes after separation of D subgenome, in which 37-95% of novel loops are lost again in RHW after merger of D genome. Interestingly, more than half of novel loops are formed by cascade reactions that are triggered by disruption of chromatin interaction between AB and D subgenomes. The interaction repressed genes in RHW relative to DD are expression suppressed, resulting in more balanced expression of the three homoeologs in RHW. The interaction levels of cascade anchors are decreased step-by-step. Leading single nucleotide polymorphisms of yield- and plant architecture-related quantitative trait locus are significantly enriched in cascade anchors. The expression of 116 genes interacted with these anchors are significantly correlated with the corresponding traits. Our findings reveal trans-regulation of intrachromosomal loops by interchromosomal interactions during genome merger and separation in polyploid species.

2.
J Genet Genomics ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670432

RESUMO

Polyploidization in plants often leads to increased cell size and grain size, which may be affected by the increased genome dosage and transcription abundance. The synthesized Triticum durum (AABB)-Haynaldia villosa (VV) amphiploid (AABBVV) has significantly increased grain size, especially grain length, than the tetraploid and diploid parents. To investigate how polyploidization affects grain development at the transcriptional level, we perform transcriptome analysis using the immature seeds of T. durum, H. villosa, and the amphiploid. The dosage effect genes are contributed more by differentially expressed genes from genome V of H. villosa. The dosage effect genes overrepresent grain development-related genes. Interestingly, the vernalization gene TaVRN1 is among the positive dosage effect genes in the T. durum‒H. villosa and T. turgidum‒Ae. tauschii amphiploids. The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight. The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence, decreased cell size, grain size, and grain yield. These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development. The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improving wheat yield.

3.
New Phytol ; 242(2): 507-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362849

RESUMO

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Assuntos
Metilação de DNA , Tetraploidia , Metilação de DNA/genética , Triticum/genética , Epigênese Genética , Transcriptoma , Regulação da Expressão Gênica de Plantas
4.
Plant Cell ; 36(6): 2160-2175, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38412459

RESUMO

Synergistic optimization of key agronomic traits by traditional breeding has dramatically enhanced crop productivity in the past decades. However, the genetic basis underlying coordinated regulation of yield- and quality-related traits remains poorly understood. Here, we dissected the genetic architectures of seed weight and oil content by combining genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) using 421 soybean (Glycine max) accessions. We identified 26 and 33 genetic loci significantly associated with seed weight and oil content by GWAS, respectively, and detected 5,276 expression quantitative trait loci (eQTLs) regulating expression of 3,347 genes based on population transcriptomes. Interestingly, a gene module (IC79), regulated by two eQTL hotspots, exhibited significant correlation with both seed weigh and oil content. Twenty-two candidate causal genes for seed traits were further prioritized by TWAS, including Regulator of Weight and Oil of Seed 1 (GmRWOS1), which encodes a sodium pump protein. GmRWOS1 was verified to pleiotropically regulate seed weight and oil content by gene knockout and overexpression. Notably, allelic variations of GmRWOS1 were strongly selected during domestication of soybean. This study uncovers the genetic basis and network underlying regulation of seed weight and oil content in soybean and provides a valuable resource for improving soybean yield and quality by molecular breeding.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Locos de Características Quantitativas , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Óleos de Plantas/metabolismo , Óleo de Soja/metabolismo , Óleo de Soja/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multiômica
5.
Mol Breed ; 43(6): 51, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313224

RESUMO

Polyploidy is widespread and particularly common in angiosperms. The prevalence of polyploidy in the plant suggests it as a crucial driver of diversification and speciation. The paleopolyploid soybean (Glycine max) is one of the most important crops of plant protein and oil for humans and livestock. Soybean experienced two rounds of whole genome duplication around 13 and 59 million years ago. Due to the relatively slow process of post-polyploid diploidization, most genes are present in multiple copies across the soybean genome. Growing evidence suggests that polyploidization and diploidization could cause rapid and dramatic changes in genomic structure and epigenetic modifications, including gene loss, transposon amplification, and reorganization of chromatin architecture. This review is focused on recent progresses about genetic and epigenetic changes during polyploidization and diploidization of soybean and represents the challenges and potentials for application of polyploidy in soybean breeding.

6.
J Mol Med (Berl) ; 101(1-2): 171-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688959

RESUMO

Inflammation and apoptosis are two important pathological causes of intervertebral disc degeneration (IDD). The crosstalk between these two biological processes during IDD pathogenesis remains elusive. Herein, we discovered that chronic inflammation induced apoptosis through a cullin-RING E3 ligase (CRL)-dependent mechanism. Two cullin proteins, CUL4A and 4B, recruited DNA damage-binding protein 1 (DDB1), RING-box protein 1 (RBX1) and DDB1- and CUL4-associated factor 6 (DCAF6) to assemble a CRL4DCAF6 E3 ligase in intervertebral discs (IVDs) derived from IDD patients. The CRL4DCAF6 E3 ligase ubiquitinated and degraded C-terminal-binding protein 1 and 2 (CtBP1/2), two homologues of transcriptional corepressors. The degradation of CtBP1/2 disassociated from the p300-forkhead box O3a (FOXO3a) complex, inducing the expression of B-cell lymphoma 2 (Bcl2)-binding component 3 (BBC3) and causing BBC3-dependent apoptosis. TSC01131, a small molecule that specifically targets CUL4-DDB1 interaction, could inhibit the ubiquitination of CtBP1/2 in vitro and in vivo, thereby decreasing the BBC3 expression level and preventing apoptosis signalling. Using a mouse chronic inflammation model, we found that chronic inflammation could accelerate the IDD process through a conserved CRL4DCAF6-mediated mechanism. The administration of TSC01131 to mice could significantly improve the outcome of IDD. Collectively, our results revealed that inflammation-dependent CRL4DCAF6 E3 ligase triggered apoptosis through the removal of CtBP-mediated transrepression. The blockage of the CRL4DCAF6 E3 ligase by TSC01131 may represent a new therapeutic strategy for IDD treatment. KEY MESSAGES: CUL4A and CUL4B recruited DDB1, RBX1 and DCAF6 to assemble a CRL4DCAF6 E3 ligase in human IDD biopsies. The CRL4DCAF6 E3 ligase ubiquitinated and degraded CtBP1/2, causing BBC3-dependent apoptosis. A small molecule TSC01131 that specifically targets CUL4-DDB1 interaction could inhibit the ubiquitination of CtBP1/2, improving the outcome of IDD in a mouse model.


Assuntos
Degeneração do Disco Intervertebral , Ubiquitina-Proteína Ligases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Proteínas Culina , Inflamação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Ubiquitinação
7.
Global Spine J ; 13(5): 1311-1318, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34263657

RESUMO

STUDY DESIGN: Retrospective analysis. OBJECTIVE: We investigated whether complete correction of cervical sagittal malalignment is necessary during 4-level anterior cervical discectomy and fusion (ACDF) in patients with kyphosis. METHODS: This retrospective study included 84 patients who underwent 4-level ACDF surgery at a university hospital between January 2010 and December 2015. Based on the degree of cervical lordosis correction, patients were categorized into the following groups: mild (0-10°), moderate (10-20°), and complete correction (>20°). The clinical outcomes, radiological parameters, and functional outcomes were analyzed. RESULTS: We observed no significant intergroup differences in the baseline characteristics. The cervical sagittal vertical axis (CSVA) correction loss at the final follow-up was lesser in the mild- and moderate- than in the complete-correction group. The spinocranial angle (SCA) and T1 slope (T1 S) were significantly higher in the moderate- and complete-correction groups than in the mild-correction group, 3 days postoperatively. The cervical proximal junctional kyphosis (CPJK), adjacent segment degeneration (ASD), and ASD following CPJK rates were higher in the complete-correction group. We observed no significant intergroup differences in postoperative complications; however, 5 patients showed internal fixation failure in the complete-correction group; 4 of these patients required reoperation. No significant intergroup difference was observed in the Japanese Orthopedic Association and neck disability index scores at any time point. CONCLUSIONS: A mild-to-moderate correction of cervical lordosis is superior to complete correction in patients with kyphosis who undergo 4-level ACDF because this approach is associated with lesser axial stress and CSVA correction loss.

8.
Bone ; 167: 116617, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36403758

RESUMO

Emerging evidence suggests that type 2 diabetes mellitus (T2DM) is associated with the pathogenesis of intervertebral disc degeneration (IDD). However, it is still unclear how T2DM contributes to IDD. Herein, we observed the accumulation of blood glucose and degenerative lumbar discs in mice fed a high-fat diet. Detection of differentially expressed genes in degenerative lumbar discs revealed that ADAMTS4 (A Disintegrin and Metalloproteinase with Thrombospondin motifs) and ADAMTS5 genes were significantly increased. In vitro analyses demonstrated that Runt-Related Transcription Factor 2 (Runx2) recruited both PPARgamma Coactivator 1alpha (PGC-1α) and CREB-Binding Protein (CBP) to transactivate the expression of ADAMTS4/5. Glucose stimulation could dose-dependently induce the accumulation of PGC-1α and promoted the binding of the CBP-PGC-1α-Runx2 complex to the promoters of ADAMTS4/5. Depletion of CBP-PGC-1α-Runx2 complex members and treatment with either PGC-1α inhibitor SR-18292 or CBP inhibitor EML425 in vitro could dramatically inhibit the glucose-induced expression of ADAMTS4/5. Administration of SR-18292 and EML425 in diabetic mice could prevent the degeneration of lumbar discs. Collectively, our results revealed a molecular mechanism by which the hyperglycemia-dependent CBP-PGC-1α-Runx2 complex was required for the transactivation of ADAMTS4/5. The blockage of this complex in diabetic mice may help prevent IDD.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Camundongos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteína de Ligação a CREB/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Glucose/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ativação Transcricional
9.
Front Plant Sci ; 13: 1012394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247601

RESUMO

Soybean [Glycine max (L.) Merri.] is one of the most valuable global crops. And vegetable soybean, as a special type of soybean, provides rich nutrition in people's life. In order to investigate the gene expression networks and molecular regulatory mechanisms that regulate soybean seed oil and protein contents during seed development, we performed transcriptomic and metabolomic analyses of soybean seeds during development in two soybean varieties that differ in protein and oil contents. We identified a total of 41,036 genes and 392 metabolites, of which 12,712 DEGs and 315 DAMs were identified. Analysis of KEGG enrichment demonstrated that DEGs were primarily enriched in phenylpropanoid biosynthesis, glycerolipid metabolism, carbon metabolism, plant hormone signal transduction, linoleic acid metabolism, and the biosynthesis of amino acids and secondary metabolites. K-means analysis divided the DEGs into 12 distinct clusters. We identified candidate gene sets that regulate the biosynthesis of protein and oil in soybean seeds, and present potential regulatory patterns that high seed-protein varieties may be more sensitive to desiccation, show earlier photomorphogenesis and delayed leaf senescence, and thus accumulate higher protein contents than high-oil varieties.

10.
Front Cell Dev Biol ; 10: 834620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300407

RESUMO

The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.

11.
J Pharmacol Sci ; 148(3): 300-306, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35177209

RESUMO

Ferroptosis is implicated in various tumors, including glioblastoma. Artesunate (ART), an anti-malarial drug, exerted antitumor properties in several cancer types. However, the role of ferroptosis in the inhibiting effect of artesunate on glioblastoma remains unclear. The purpose of this study was to investigate the effects of ART on the ferroptosis of glioblastoma and to elucidate the underlying mechanisms. We found that ART inhibited the proliferation of glioblastoma cells in vitro and glioblastoma tumorigenesis in vivo. Characteristic changes of ferroptosis were observed in ART group, including GSH depletion, lipid peroxidation and iron overload. Meanwhile, the protein level of GPX4 were lower in ART group than that in control group. Ferrostatin-1, a ferroptosis inhibitor, could rescue the cell death induced by ART in U251 cells. Further examination of the mechanism revealed that the effect of ART on ferroptosis was partially governed by regulating iron homeostasis and p38 and ERK signaling pathway. These findings support that ART triggers ferroptosis in glioblastoma and might be a potential therapeutic agent for glioblastoma treatment.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos , Artesunato/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Glioblastoma/genética , Glioblastoma/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Glioblastoma/tratamento farmacológico , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Ferro/metabolismo , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo
12.
Genome Biol ; 23(1): 34, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073966

RESUMO

BACKGROUND: Bread wheat (Triticum aestivum) is an allohexaploid that is generated by two subsequent allopolyploidization events. The large genome size (16 Gb) and polyploid complexity impede our understanding of how regulatory elements and their interactions shape chromatin structure and gene expression in wheat. The open chromatin enrichment and network Hi-C (OCEAN-C) is a powerful antibody-independent method to detect chromatin interactions between open chromatin regions throughout the genome. RESULTS: Here we generate open chromatin interaction maps for hexaploid wheat and its tetraploid and diploid relatives using OCEAN-C. The anchors of chromatin loops show high chromatin accessibility and are concomitant with several active histone modifications, with 67% of them interacting with multiple loci. Binding motifs of various transcription factors are significantly enriched in the hubs of open chromatin interactions (HOCIs). The genes linked by HOCIs represent higher expression level and lower coefficient expression variance than the genes linked by other loops, which suggests HOCIs may coordinate co-expression of linked genes. Thousands of interchromosomal loops are identified, while limited interchromosomal loops (0.4%) are identified between homoeologous genes in hexaploid wheat. Moreover, we find structure variations contribute to chromatin interaction divergence of homoeologs and chromatin topology changes between different wheat species. The genes with discrepant chromatin interactions show expression alteration in hexaploid wheat compared with its tetraploid and diploid relatives. CONCLUSIONS: Our results reveal open chromatin interactions in different wheat species, which provide new insights into the role of open chromatin interactions in gene expression during the evolution of polyploid wheat.


Assuntos
Cromatina , Triticum , Cromatina/metabolismo , Cromossomos , Genoma de Planta , Poliploidia , Triticum/genética , Triticum/metabolismo
13.
Global Spine J ; 12(4): 620-626, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32975454

RESUMO

STUDY DESIGN: This was a prospective controlled study. OBJECTIVE: To compare the accuracy and clinical outcomes of robot-assisted (RA) and fluoroscopy-guided (FG) pedicle screw placement in posterior cervical surgery. METHODS: This study included 58 patients. The primary outcome measures were the 1-time success rate and the accuracy of pedicle screw placement according to the Gertzbein-Robbins scales. The secondary outcome measures, including the operative time, intraoperative blood loss, hospital stay, cumulative radiation time, radiation dose, intraoperative advent events, and postoperative complications, were recorded and analyzed. The Japanese Orthopedics Association (JOA) scores and Neck Disability Index (NDI) were used to assess the neurological function of patients before and at 3 and 6 months after surgery. RESULTS: The rate of grade A was significantly higher in the RA group than in the FG group (90.6% and 71.1%; P < .001). The clinically acceptable accuracy was 97.2% in the RA group and 90.7% in the FG group (P = .009). Moreover, the 1-time success rate was significantly higher in the RA group than in the FG group. The RA group had less radiation time (P < .001) and less radiation dose (P = .002) but longer operative time (P = .001). There were no significant differences in terms of intraoperative blood loss, hospital stay, intraoperative adverse events, postoperative complications, JOA scores, and NDI scores at each follow-up time point between the 2 groups. CONCLUSIONS: The RA technique achieved higher accuracy and 1-time success rate of pedicle screw placement in posterior cervical surgery while achieving comparable clinical outcomes.

14.
Nat Ecol Evol ; 5(10): 1382-1393, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34413505

RESUMO

During evolution successful allopolyploids must overcome 'genome shock' between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsis thaliana (TT) and Arabidopsis arenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.


Assuntos
Arabidopsis , Arabidopsis/genética , Epigenômica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Humanos , Poliploidia
15.
Yonsei Med J ; 62(9): 843-849, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34427071

RESUMO

PURPOSE: Temozolomide is used in first-line treatment for glioblastoma. However, chemoresistance to temozolomide is common in glioma patients. In addition, mechanisms for the anti-tumor effects of temozolomide are largely unknown. Ferroptosis is a form of programmed cell death triggered by disturbed redox homeostasis, overloaded iron, and increased lipid peroxidation. The present study was performed to elucidate the involvement of ferroptosis in the anti-tumor mechanisms of temozolomide. MATERIALS AND METHODS: We utilized the CCK8 assay to evaluate cytotoxicity. Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), iron, and glutathione (GSH) were measured. Flow cytometry and fluorescence microscope were used to detect the production of reactive oxygen species (ROS). Western blotting, RT-PCR and siRNA transfection were used to investigate molecular mechanisms. RESULTS: Temozolomide increased the levels of LDH, MDA, and iron and reduced GSH levels in TG905 cells. Furthermore, we found that ROS levels and DMT1 expression were elevated in TG905 cells treated with temozolomide and were accompanied by a decrease in the expression of glutathione peroxidase 4, indicating an iron-dependent cell death, ferroptosis. Our results also showed that temozolomide-induced ferroptosis is associated with regulation of the Nrf2/HO-1 pathway. Conversely, DMT1 knockdown by siRNA evidently blocked temozolomide-induced ferroptosis in TG905 cells. CONCLUSION: Taken together, our findings indicate that temozolomide may suppress cell growth partly by inducing ferroptosis by targeting DMT1 expression in glioblastoma cells.


Assuntos
Ferroptose , Glioblastoma , Glioblastoma/tratamento farmacológico , Humanos , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio , Temozolomida/farmacologia
16.
J Comp Eff Res ; 10(10): 845-856, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33906371

RESUMO

Aim: To compare the screw accuracy and clinical outcomes between robot-assisted minimally invasive transforaminal lumbar interbody fusion (RA MIS-TLIF) and open TLIF in the treatment of one-level lumbar degenerative disease. Materials & methods: From May 2018 to December 2019, a consecutive series of patients undergoing robot-assisted minimally invasive one-level lumbar fusion procedures were retrospectively compared with matched controls who underwent one-level open TLIF procedures for clinical and quality-of-life outcomes. Results: A total of 52 patients underwent RA MIS-TLIF procedures (robot-assisted [RA] group) and 52 matched controls received freehand open TLIF procedures (open [OP] group). The RA group had more grade A screws with 96.2% one-time success rate of screw placement (p < 0.05). Besides, the RA group experienced less intraoperative blood loss and shorter length of hospital stay, while the OP group had shorter operative duration and cumulative radiation time (p < 0.001). What is more, the average VAS score for low back pain and ODI score in the RA group were lower than that in the OP group 1 month after operation (p < 0.05). Conclusion: The use of real-time, image-guided robot system may further expand the advantages of MIS-TLIF technique in terms of accuracy and safety.


Assuntos
Robótica , Fusão Vertebral , Humanos , Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
17.
Plant Cell ; 33(5): 1430-1446, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33730165

RESUMO

Polyploidy or whole-genome duplication (WGD) is widespread in plants and is a key driver of evolution and speciation, accompanied by rapid and dynamic changes in genomic structure and gene expression. The 3D structure of the genome is intricately linked to gene expression, but its role in transcription regulation following polyploidy and domestication remains unclear. Here, we generated high-resolution (∼2 kb) Hi-C maps for cultivated soybean (Glycine max), wild soybean (Glycine soja), and common bean (Phaseolus vulgaris). We found polyploidization in soybean may induce architecture changes of topologically associating domains and subsequent diploidization led to chromatin topology alteration around chromosome-rearrangement sites. Compared with single-copy and small-scale duplicated genes, WGD genes displayed more long-range chromosomal interactions and were coupled with higher levels of gene expression and chromatin accessibilities but void of DNA methylation. Interestingly, chromatin loop reorganization was involved in expression divergence of the genes during soybean domestication. Genes with chromatin loops were under stronger artificial selection than genes without loops. These findings provide insights into the roles of dynamic chromatin structures on gene expression during polyploidization, diploidization, and domestication of soybean.


Assuntos
Cromatina/química , Domesticação , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Poliploidia , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica , Genoma de Planta , Phaseolus/genética , Glycine max/anatomia & histologia
18.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771925

RESUMO

Polyploidy is a prominent feature for genome evolution in many animals and all flowering plants. Plant polyploids often show enhanced fitness in diverse and extreme environments, but the molecular basis for this remains elusive. Soil salinity presents challenges for many plants including agricultural crops. Here we report that salt tolerance is enhanced in tetraploid rice through lower sodium uptake and correlates with epigenetic regulation of jasmonic acid (JA)-related genes. Polyploidy induces DNA hypomethylation and potentiates genomic loci coexistent with many stress-responsive genes, which are generally associated with proximal transposable elements (TEs). Under salt stress, the stress-responsive genes including those in the JA pathway are more rapidly induced and expressed at higher levels in tetraploid than in diploid rice, which is concurrent with increased jasmonoyl isoleucine (JA-Ile) content and JA signaling to confer stress tolerance. After stress, elevated expression of stress-responsive genes in tetraploid rice can induce hypermethylation and suppression of the TEs adjacent to stress-responsive genes. These induced responses are reproducible in a recurring round of salt stress and shared between two japonica tetraploid rice lines. The data collectively suggest a feedback relationship between polyploidy-induced hypomethylation in rapid and strong stress response and stress-induced hypermethylation to repress proximal TEs and/or TE-associated stress-responsive genes. This feedback regulation may provide a molecular basis for selection to enhance adaptation of polyploid plants and crops during evolution and domestication.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Tolerância ao Sal/genética , Ciclopentanos/metabolismo , Elementos de DNA Transponíveis , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Oxilipinas/metabolismo , Tetraploidia
19.
Eur J Pharmacol ; 895: 173891, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482178

RESUMO

Intervertebral disc degeneration (IDD) is a spinal degenerative disease and one of the most important causes of musculoskeletal disability. Matrix metalloproteinase (MMP)-mediated extracellular matrix degradation is the core process of IDD. The regulators of MMPs in the intervertebral disc are still not fully known. In this study, using quantitative reverse transcription PCR, luciferase reporter assay, Western blotting, immunofluorescence, flow cytometry, and Cell Counting Kit-8 assay, we found that the miR-874-3p expression level was significantly decreased in IDD patients. MiR-874-3p could target and repress MMP2 and MMP3 expression in nucleus pulposus cells. These results could improve the understanding of IDD and provide a possible diagnostic marker and treatment candidate for IDD. The miR-874-3p/MMP2/MMP3 axis might also provide direction for future cancer and inflammation investigations.


Assuntos
Matriz Extracelular/enzimologia , Degeneração do Disco Intervertebral/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , MicroRNAs/metabolismo , Núcleo Pulposo/enzimologia , Apoptose , Estudos de Casos e Controles , Células Cultivadas , Regulação para Baixo , Matriz Extracelular/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , MicroRNAs/genética , Núcleo Pulposo/patologia
20.
Plant J ; 105(3): 678-690, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131144

RESUMO

Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to 'genomic shock' and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.


Assuntos
Instabilidade Genômica , Histonas/metabolismo , Poliploidia , Triticum/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , Evolução Molecular , Genoma de Planta , Histonas/genética , Lisina/metabolismo , Recombinação Genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA