Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biomaterials ; 280: 121277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861510

RESUMO

Mesenchymal stem cell (MSC) therapy is a promising treatment for various intractable disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). However, an analysis of fundamental characteristics driving in vivo behaviors of transplanted cells has not been performed, causing debates about rational use and efficacy of MSC therapy. Here, we implemented two-photon intravital imaging and single cell transcriptome analysis to evaluate the in vivo behaviors of engrafted multipotent MSCs (M-MSCs) derived from human embryonic stem cells (hESCs) in an acute IC/BPS animal model. Two-photon imaging analysis was performed to visualize the dynamic association between engrafted M-MSCs and bladder vasculature within live animals until 28 days after transplantation, demonstrating the progressive integration of transplanted M-MSCs into a perivascular-like structure. Single cell transcriptome analysis was performed in highly purified engrafted cells after a dual MACS-FACS sorting procedure and revealed expression changes in various pathways relating to pericyte cell adhesion and cellular stress. Particularly, FOS and cyclin dependent kinase-1 (CDK1) played a key role in modulating the migration, engraftment, and anti-inflammatory functions of M-MSCs, which determined their in vivo therapeutic potency. Collectively, this approach provides an overview of engrafted M-MSC behavior in vivo, which will advance our understanding of MSC therapeutic applications, efficacy, and safety.


Assuntos
Cistite Intersticial , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Cistite Intersticial/terapia , Modelos Animais de Doenças , Microscopia Intravital , Transplante de Células-Tronco Mesenquimais/métodos , Transcriptoma
2.
J Clin Med ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899334

RESUMO

Mesenchymal stem/stromal cell (MSC) therapy is a promising approach for treatment of as yet incurable detrusor underactivity (DUA), which is characterized by decreased detrusor contraction strength and/or duration, leading to prolonged bladder emptying. In the present study, we demonstrated the therapeutic potential of human embryonic stem cell (ESC)-derived multipotent MSCs (M-MSCs) in a diabetic rat model of DUA. Diabetes mellitus (DM) was induced by intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) into 8-week-old female Sprague-Dawley rats. Three weeks later, various doses of M-MSCs (0.25, 0.5, and 1 × 106 cells) or an equivalent volume of PBS were injected into the outer layer of the bladder. Awake cystometry, organ bath, histological, and gene expression analyses were evaluated 1 week (short-term) or 2 and 4 weeks (long-term) after M-MSC transplantation. STZ-induced diabetic rats developed DUA, including phenotypes with significantly longer micturition intervals, increased residual urine amounts and bladder capacity, decreased micturition pressure on awake cystometry, and contractile responses to various stimuli in organ bath studies. Muscle degeneration, mast cell infiltration, fibrosis, and apoptosis were present in the bladders of DM animals. A single local transplantation of M-MSCs ameliorated DUA bladder pathology, including functional changes and histological evaluation, and caused few adverse outcomes. Immunostaining and gene expression analysis revealed that the transplanted M-MSCs supported myogenic restoration primarily by engrafting into bladder tissue via pericytes, and subsequently exerting paracrine effects to prevent apoptotic cell death in bladder tissue. The therapeutic efficacy of M-MSCs was superior to that of human umbilical cord-derived MSCs at the early time point (1 week). However, the difference in efficacy between M-MSCs and human umbilical cord-derived MSCs was statistically insignificant at the later time points (2 and 4 weeks). Collectively, the present study provides the first evidence for improved therapeutic efficacy of a human ESC derivative in a preclinical model of DM-associated DUA.

3.
Sci Adv ; 6(16): eaba1334, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32490200

RESUMO

Glutathione (GSH), the most abundant nonprotein thiol functioning as an antioxidant, plays critical roles in maintaining the core functions of mesenchymal stem cells (MSCs), which are used as a cellular immunotherapy for graft-versus-host disease (GVHD). However, the role of GSH dynamics in MSCs remains elusive. Genome-wide gene expression profiling and high-throughput live-cell imaging assays revealed that CREB1 enforced the GSH-recovering capacity (GRC) of MSCs through NRF2 by directly up-regulating NRF2 target genes responsible for GSH synthesis and redox cycling. MSCs with enhanced GSH levels and GRC mediated by CREB1-NRF2 have improved self-renewal, migratory, anti-inflammatory, and T cell suppression capacities. Administration of MSCs overexpressing CREB1-NRF2 target genes alleviated GVHD in a humanized mouse model, resulting in improved survival, decreased weight loss, and reduced histopathologic damages in GVHD target organs. Collectively, these findings demonstrate the molecular and functional importance of the CREB1-NRF2 pathway in maintaining MSC GSH dynamics, determining therapeutic outcomes for GVHD treatment.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Glutationa/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
4.
Biomater Res ; 23: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798945

RESUMO

BACKGROUND: Two-dimensional black phosphorus nanosheets (BPNSs) have recently emerged as a successive novel nanomaterial owing to their uniqueness in optical and electrical properties. Although BPNSs have found a wide range of biomedical applications, their biosafety is still a major concern to be addressed. METHODS: In this study, we have prepared layered BPNSs using liquid exfoliation procedure, and evaluated their physicochemical properties using Fourier Transform-infrared (FTIR) spectroscopy, Raman spectroscopy, atomic force microscopy, and Zetasizer analyses. We have investigated potential cytotoxicity of BPNSs against three different types of fibroblast cells, i.e. mouse embryonic fibroblast (NIH3T3), primary cultured normal human dermal fibroblast (nHDF), and fibrosarcoma (HT1080). Cell counting kit-8 (CCK-8) assay was carried out to assess cellular metabolic activity in cells whereas lactate dehydrogenase (LDH) activity assay was helpful to study plasma membrane integrity. RESULTS: Our salient research findings showed that BPNSs were polydispersed in solution due to aggregation. Toxic response of BPNSs against fibroblast cells was in the order, HT1080>nHDF>NIH3T3. The nanosheets reduced the number of cancerous cells with significant difference to normal cells. CONCLUSIONS: We suggest that BPNSs can be considered for cancer treatment as they destroy cancerous cells effectively. However, a comprehensive study is required to elucidate other biological effects of BPNSs.

5.
Nanomaterials (Basel) ; 9(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466309

RESUMO

The zero (0-D) and one-dimensional (1-D) carbon nanomaterials have gained attention among researchers because they exhibit a larger surface area to volume ratio, and a smaller size. Furthermore, carbon is ubiquitously present in all living organisms. However, toxicity is a major concern while utilizing carbon nanomaterials for biomedical applications such as drug delivery, biosensing, and tissue regeneration. In the present review, we have summarized some of the recent findings of cellular and animal level toxicity studies of 0-D (carbon quantum dot, graphene quantum dot, nanodiamond, and carbon black) and 1-D (single-walled and multi-walled carbon nanotubes) carbon nanomaterials. The in vitro toxicity of carbon nanomaterials was exemplified in normal and cancer cell lines including fibroblasts, osteoblasts, macrophages, epithelial and endothelial cells of different sources. Similarly, the in vivo studies were illustrated in several animal species such as rats, mice, zebrafish, planktons and, guinea pigs, at various concentrations, route of administrations and exposure of nanoparticles. In addition, we have described the unique properties and commercial usage, as well as the similarities and differences among the nanoparticles. The aim of the current review is not only to signify the importance of studying the toxicity of 0-D and 1-D carbon nanomaterials, but also to emphasize the perspectives, future challenges and possible directions in the field.

6.
Antioxidants (Basel) ; 8(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416178

RESUMO

A polyphenolic extract from melon (Cucumis melo L.), as a potential source of natural antioxidants, has been reported to have a positive effect on osteoblast activity. In this study, the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization, and metabolism were examined in osteoporotic rat models. Osteoporosis was induced by ovariectomy (OVX) in female rats and then maintained for 8 weeks, along with the ingestion of phosphate-buffered saline (PBS, OVXP) or ECO-A (OVXE) for an additional 4 weeks. At a pre-determined timepoint, bone strengths, as well as bone mineral contents (BMC) and the density (BMD) of femurs and/or lumbar spines extracted from each animal, were measured by a mechanical test and dual-energy X-ray absorptiometry, respectively. Moreover, several biochemical markers for bone turnover were analyzed by respective colorimetric assay kits in addition to clinical analyses. The maximum load and stiffness of femurs from the OVXE group were found to be significantly higher than the other groups. Furthermore, the OVXE group showed significantly higher BMC, BMD, and bone volume than the OVX and OVXP groups, which were comparable to the non-OVX (sham) group. The levels of bone formation and resorption markers in the OVXE group were similar to the sham group, but significantly different from other groups. In conclusion, these results suggest that ECO-A can play potentially positive roles in the protection of bone loss in rats with OVX-induced osteoporosis.

7.
Cells ; 9(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905757

RESUMO

The purpose of this study was to reduce the amount of stem cells used in treating preclinical interstitial cystitis (IC model) by investigating the synergistic effects of multipotent mesenchymal stem cells (M-MSCs; human embryonic stem cell-derived) and N-acetylcysteine (NAC). Eight-week-old female Sprague-Dawley rats were divided into seven groups, i.e., sham (n = 10), lipopolysaccharide/protamine sulfate (LPS/PS; n = 10), LPS/PS + NAC (n = 10), LPS/PS with 25K MSC (n = 10), LPS/PS with 50K MSC (n = 10) LPS/PS + 25K MSC + NAC (n = 10), and LPS/PS + 50K MSC + NAC (n = 10). To induce the IC rat model, protamine sulfate (10 mg, 45 min) and LPS (750 µg, 30 min) were instilled once a week for five consecutive weeks via a transurethral PE-50 catheter. Phosphate-buffered saline (PBS) was used in the sham group. One week after the final instillation, M-MSCs with two suboptimal dosages (i.e., 2.5 or 5.0 × 104 cells) were directly transplanted into the outer-layer of the bladder. Simultaneously, 200 mg/kg of NAC or PBS was intraperitoneally injected daily for five days. The therapeutic outcome was evaluated one week after M-MSC or PBS injection by awake cystometry and histological analysis. Functionally, LPS/PS insult led to irregular micturition, decreased intercontraction intervals, and decreased micturition volume. Both monotherapy and combination therapy significantly increased contraction intervals, increased urination volume, and reduced the residual volume, thereby improving the urination parameters compared to those of the LPS group. In particular, a combination of NAC dramatically reduced the amount of M-MSCs used for significant restoration in histological damage, including inflammation and apoptosis. Both M-MSCs and NAC-based therapy had a beneficial effect on improving voiding dysfunction, regenerating denudated urothelium, and relieving tissue inflammation in the LPS-induced IC/BPS rat model. The combination of M-MSC and NAC was superior to MSC or NAC monotherapy, with therapeutic efficacy that was comparable to that of previously optimized cell dosage (1000K) without compromised therapeutic efficacy.


Assuntos
Acetilcisteína/farmacologia , Cistite Intersticial/etiologia , Cistite Intersticial/terapia , Lipopolissacarídeos/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Biomarcadores , Terapia Combinada , Cistite Intersticial/metabolismo , Cistite Intersticial/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imuno-Histoquímica , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Ratos , Resultado do Tratamento
8.
Adv Exp Med Biol ; 1078: 103-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357620

RESUMO

Tissues are often damaged by physical trauma, infection or tumors. A slight injury heals naturally through the normal healing process, while severe injury causes serious health implications. Therefore, many efforts have been devoted to treat and repair various tissue defects. Recently, tissue engineering approaches have attracted a rapidly growing interest in biomedical fields to promote and enhance healing and regeneration of large-scale tissue defects. On the other hand, with the recent advances in nanoscience and nanotechnology, various nanomaterials have been suggested as novel biomaterials. Graphene, a two-dimensional atomic layer of graphite, and its derivatives have recently been found to possess promoting effects on various types of cells. In addition, their unique properties, such as outstanding mechanical and biological properties, allow them to be a promising option for hard tissue regeneration. Herein, we summarized recent research advances in graphene-based nanocomposites for hard tissue regeneration, and highlighted their promising potentials in biomedical and tissue engineering.


Assuntos
Regeneração Óssea , Grafite , Nanocompostos , Engenharia Tecidual , Materiais Biocompatíveis , Humanos , Nanotecnologia
9.
Nutrients ; 10(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201880

RESUMO

Prenatal iron and folic acid (IFA) supplements are offered free to all pregnant women in Malawi to reduce maternal anemia and improve birth outcomes. We investigated the association between self-reported compliance to IFA intake and risk of low birth weight (LBW). Pregnant women who attended Bwaila Maternity Wing of Lilongwe District Hospital for delivery were recruited (n = 220). We used a questionnaire to collect self-reported information on IFA use and maternal sociodemographic data. Before delivery, blood samples for maternal hemoglobin (Hb) and folate status, and upon delivery, birth weight, and other newborn anthropometrics were measured. We used multivariable logistic regression to determine risk of LBW by prenatal IFA intake. The self-reported number of IFA pills taken during pregnancy was positively associated with Hb, but not serum and RBC folate concentration: <45, 45⁻89 and ≥90 pills taken corresponded with mean (SD) Hb 10.7 (1.6), 11.3 (1.8), and 11.7 (1.6) g/dL, respectively (p = 0.006). The prevalence of LBW was 20.1%, 13.5% and 5.6% for those who reported taking IFA pills <45, 45⁻89, and ≥90 pills, respectively (p = 0.027). Taking >60 IFA pills reduced risk of LBW delivery (OR (95% CI) = 0.15 (0.03⁻0.70), p = 0.033) than taking ≤30 pills. Self-reported compliance to IFA use is valid for assessing prenatal supplement program in Malawi, especially Hb status, and can reduce the rate of LBW.


Assuntos
Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Recém-Nascido de Baixo Peso , Ferro/administração & dosagem , Cooperação do Paciente/estatística & dados numéricos , Cuidado Pré-Natal/estatística & dados numéricos , Adulto , Feminino , Humanos , Recém-Nascido , Malaui , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Cuidado Pré-Natal/métodos , Cuidado Pré-Natal/psicologia , Autorrelato , Adulto Jovem
10.
World J Gastroenterol ; 19(7): 1020-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23467465

RESUMO

To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer, we systematically searched the PubMed and EMBASE databases up to May 2012, with a restriction to English publications, and the references of the retrieved articles. We combined the study-specific relative risks (RRs) and 95%CI, comparing the highest with the lowest categories of consumption by using a random-effects model. A total of 4 cohort studies and 23 case-control studies were included in the meta-analysis. The combined RRs (95%CI) of the cohort studies comparing the highest and lowest categories were 1.26 (1.00-1.59) for red meat and 1.25 (0.83-1.86) for processed meat. For the case-control studies, the combined RRs (95%CI) comparing the highest and lowest categories were 1.44 (1.16-1.80) for red meat and 1.36 (1.07-1.74) for processed meat. Findings from this meta-analysis suggest that a higher consumption of red meat was associated with a greater risk of esophageal cancer.


Assuntos
Dieta/efeitos adversos , Neoplasias Esofágicas/epidemiologia , Manipulação de Alimentos , Produtos da Carne/efeitos adversos , Carne/efeitos adversos , Neoplasias Esofágicas/prevenção & controle , Comportamento Alimentar , Humanos , Prognóstico , Medição de Risco , Fatores de Risco , Comportamento de Redução do Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA