Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 475(13): 2127-2151, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29760236

RESUMO

YlaD, a membrane-anchored anti-sigma (σ) factor of Bacillus subtilis, contains a HX3CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained Zn and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX3CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese (Mn). The ylaC gene expression using ßGlu activity from P yla :gusA was observed at the late-exponential and early-stationary phase, and the ylaC-overexpressing mutant constitutively expressed gene transcripts of clpP and sigH, an important alternative σ factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in Mn ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and Mn-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function σ factors during sporulation via a Mn-dependent redox-sensing molecular switch.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Manganês/metabolismo , Esporos Bacterianos/metabolismo , Transcrição Gênica/fisiologia , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Oxirredução , Regiões Promotoras Genéticas , Esporos Bacterianos/genética
2.
Proc Natl Acad Sci U S A ; 113(35): E5202-11, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27531959

RESUMO

For bacteria, cysteine thiol groups in proteins are commonly used as thiol-based switches for redox sensing to activate specific detoxification pathways and restore the redox balance. Among the known thiol-based regulatory systems, the MarR/DUF24 family regulators have been reported to sense and respond to reactive electrophilic species, including diamide, quinones, and aldehydes, with high specificity. Here, we report that the prototypical regulator YodB of the MarR/DUF24 family from Bacillus subtilis uses two distinct pathways to regulate transcription in response to two reactive electrophilic species (diamide or methyl-p-benzoquinone), as revealed by X-ray crystallography, NMR spectroscopy, and biochemical experiments. Diamide induces structural changes in the YodB dimer by promoting the formation of disulfide bonds, whereas methyl-p-benzoquinone allows the YodB dimer to be dissociated from DNA, with little effect on the YodB dimer. The results indicate that B. subtilis may discriminate toxic quinones, such as methyl-p-benzoquinone, from diamide to efficiently manage multiple oxidative signals. These results also provide evidence that different thiol-reactive compounds induce dissimilar conformational changes in the regulator to trigger the separate regulation of target DNA. This specific control of YodB is dependent upon the type of thiol-reactive compound present, is linked to its direct transcriptional activity, and is important for the survival of B. subtilis This study of B. subtilis YodB also provides a structural basis for the relationship that exists between the ligand-induced conformational changes adopted by the protein and its functional switch.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzoquinonas/química , Benzoquinonas/farmacologia , Cristalografia por Raios X , Diamida/química , Diamida/farmacologia , Oxirredução , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
3.
FEBS Lett ; 589(15): 1863-71, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25957768

RESUMO

Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression.


Assuntos
Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Candida albicans/enzimologia , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Animais , Ascorbato Peroxidases/química , Ascorbato Peroxidases/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Diferenciação Celular , Feminino , Glutationa/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Consumo de Oxigênio , Homologia de Sequência de Aminoácidos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA