Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 135: 102630, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38830708

RESUMO

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Assuntos
Dinoflagellida , Água Doce , Espécies Introduzidas , Filogenia , Navios , Dinoflagellida/fisiologia , Dinoflagellida/genética , Dinoflagellida/classificação , Água Doce/parasitologia , China , Ecossistema , Sedimentos Geológicos , Proliferação Nociva de Algas
3.
Artigo em Inglês | MEDLINE | ID: mdl-38597157

RESUMO

OBJECTIVE: This study examined the relationship between Cystatin C (CysC) levels and all-cause, CVD, and cancer mortality in US metabolic syndrome (MetS) patients. METHODS: The 1999-2002 National Health and Nutrition Examination Survey (NHANES) prospective cohort research included 1,980 MetS participants. To assess CysC levels and all-cause, CVD, and cancer mortality, fitted curves, Kaplan-Meier survival curves, cox regression analysis, and ROC curves were performed. RESULTS: During a mean follow-up of 15.3 ± 5.4 years, a total of 819 deaths occurred. The fitted and Kaplan-Meier survival curves revealed that greater CysC levels were linked to higher all-cause, CVD, and cancer mortality rates (P<0.05). After adjusting for variables, CysC level was associated with all-cause, CVD, and cancer mortality at 1.63 (1.42-1.88), 1.53 (1.19-1.95), and 1.53 (1∼2.32), respectively (P<0.05). Later tertile models showed consistent results. High CysC tertile participants showed higher risk of all-cause mortality (HR 1.87; 1.43-2.45), CVD mortality (HR 1.97, 1.15∼3.38), and cancer mortality (HR 1.72, 1.01∼2.91) compared to those in the lowest tertile (P<0.05). Subgroup studies by sex and other characteristics confirmed the findings. CysC demonstrated the higher predictive efficacy across mortality outcomes, followed by eGFR, outperforming Urea nitrogen, Creatinine, Uric acid, and CRP. CysC alone exhibited substantial predictive value for all-cause (AUC 0.773; P<0.05) and CVD mortality (AUC 0.726; P<0.05). Combining CysC with age enhanced the predictive value for all-cause mortality to 0.861 and CVD mortality to 0.771 (P<0.05). CONCLUSION: MetS patients with elevated CysC levels have a higher risk of all-cause, CVD, and cancer death. CysC may predict MetS all-cause and CVD mortality.

4.
Int J Biol Macromol ; 258(Pt 1): 128950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143068

RESUMO

Resveratrol (RES) is a functional polyphenol that suffers from low water solubility and poor bioavailability. A novel RES-loaded soy protein isolate-dipotassium glycyrrhizinate (SPI-DG) nanocomplex (RES@SPI-DG) was designed and evaluated in this study. RES@SPI-DG was prepared using a simple but novel self-assembly ultrasonic-assisted pH-driven method. The interactions between RES and SPI-DG were non-covalent bonds, including hydrophobic interactions, hydrogen bonds, and van der Waals interactions. RES@SPI-DG exhibited high encapsulation efficiency (97.60 ± 0.38 %) and loading capacity (8.74 ± 0.03 %) of RES with a uniform small size (68.39 ± 1.10 nm). RES in RES@SPI-DG was in an amorphous state and demonstrated a 24-h apparent solubility 482.53-fold higher than bare RES. RES@SPI-DG also showed strong in vitro antioxidant properties. The pH-responsive hydrogel character of SPI-DG makes it an effective intestine-targeted delivery system that could retard the release of RES in a simulated stomach and accelerate it in a simulated intestine. In animal experiments, the bioavailability of RES@SPI-DG was 5.17 times higher than that of bare RES, and the biodistribution was also significantly improved. RES@SPI-DG demonstrated a strong hepatoprotective effect against overdose acetaminophen-induced liver injury. The SPI-DG complex might be a promising nano-platform for enhancing the bioavailability and efficacy of hydrophobic polyphenols such as RES.


Assuntos
Ácido Glicirrízico , Proteínas de Soja , Animais , Resveratrol , Proteínas de Soja/química , Hidrogéis , Disponibilidade Biológica , Distribuição Tecidual , Tamanho da Partícula , Concentração de Íons de Hidrogênio
5.
Cell Cycle ; 22(20): 2229-2244, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974462

RESUMO

Identifying robust breast cancer subtypes will help to reveal the cancer heterogeneity. However, previous breast cancer subtypes were based on population-level quantitative gene expression, which is affected by batch effects and cannot be applied to individuals. We detected differential gene expression, genomic, and epigenomic alterations to identify driver differential expression at the individual level. The individual driver differential expression reflected the breast cancer patients' heterogeneity and revealed four subtypes. Mesenchymal subtype as the most aggressive subtype harbored deletion and downregulated expression of genes in chromosome 11q23 region. Specifically, silencing of the SDHD gene in 11q23 promoted the invasion and migration of breast cancer cells in vitro by the epithelial-mesenchymal transition. The immunologically hot subtype displayed an immune-hot microenvironment, including high T-cell infiltration and upregulated PD-1 and CTLA4. Luminal and genomic-unstable subtypes showed opposite macrophage polarization, which may be regulated by the ligand-receptor pairs of CD99. The integration of multi-omics data at the individual level provides a powerful framework for elucidating the heterogeneity of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Multiômica , Genômica , Epigenômica , Microambiente Tumoral/genética
7.
Mol Biol Rep ; 50(1): 121-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36315330

RESUMO

BACKGROUND: Extrinsic molecular mechanisms that regulate hematopoietic stem/progenitor cell (HSPC) aging are still poorly understood, and a potential protective medication needs to be explored. MATERIALS AND METHODS: The senescent parameters of hematopoietic cells and bone marrow stromal cells (BMSCs) including cell cycle analysis, senescence-associated SA-ß-gal staining and signals, hematopoietic factors and cellular junction were analyzed in femur and tibia of rats. Furthermore, Sca-1+ HSPCs and BMSCs co-culture system was established to evaluate the direct effects of BMSC feeder layer to HSPCs. Oxidative DNA damage indicators in Sca-1+ HSCs and senescence-associated secretory phenotype (SASP) of BMSCs, gap junction intercellular communication between BMSCs, osteogenesis/adipogenisis differentiation balance of BMSCs were detected. RESULTS: In the D-gal pre-administrated rats, ASP treatment rescued senescence of hematopoietic cells and BMSCs, reserved CFU-GEMM; also, ASP treatment attenuated stromal oxidative load, ameliorated SCF, CXCL12, and GM-CSF production, increased Connexin-43 (Cx43) expression. BMSCs and Sca-1+ HSPCs co-cultivation demonstrated that ASP treatment prevented oxidative DNA damage response in co-cultured Sca-1+ HSPCs induced by D-gal pre-administration of feeder layer and the underlying mechanism may be related to ASP ameliorating feeder layer dysfunction due to D-gal induced senescence via inhibiting secretion of IL-1, IL-6, TNF-α, and RANTES, enhancing Cx43-mediated intercellular communication, improving Runx2 expression whereas decreasing PPARγ expression in BMSCs. CONCLUSION: The antioxidant property of ASP may provide a stroma-mediated potential therapeutic strategy for HSPC aging.


Assuntos
Angelica sinensis , Ratos , Animais , Galactose , Conexina 43 , Senescência Celular , Estresse Oxidativo , Envelhecimento , Polissacarídeos/farmacologia
8.
Cell Death Dis ; 13(6): 525, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35661695

RESUMO

Long non-coding RNA (lncRNA) was reported to be a critical regulator of cellular homeostasis, but poorly understood in idiopathic pulmonary fibrosis (IPF). Here, we systematically identified a crucial lncRNA, p53-induced long non-coding RNA TP53 target 1 (TP53TG1), which was the dysregulated hub gene in IPF regulatory network and one of the top degree genes and down-regulated in IPF-drived fibroblasts. Functional experiments revealed that overexpression of TP53TG1 attenuated the increased expression of fibronectin 1 (Fn1), Collagen 1α1, Collagen 3α1, ACTA2 mRNA, Fn1, and Collagen I protein level, excessive fibroblasts proliferation, migration and differentiation induced by TGF-ß1 in MRC-5 as well as PMLFs. In vivo assays identified that forced expression of TP53TG1 by adeno-associated virus 5 (AAV5) not only prevented BLM-induced experimental fibrosis but also reversed established lung fibrosis in the murine model. Mechanistically, TP53TG1 was found to bind to amount of tight junction proteins. Importantly, we found that TP53TG1 binds to the Myosin Heavy Chain 9 (MYH9) to inhibit its protein expression and thus the MYH9-mediated activation of fibroblasts. Collectively, we identified the TP53TG1 as a master suppressor of fibroblast activation and IPF, which could be a potential hub for targeting treatment of the disease.


Assuntos
Fibrose Pulmonar Idiopática , RNA Longo não Codificante , Animais , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
9.
Bioengineered ; 13(2): 3566-3580, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35068337

RESUMO

Ferroptosis is a kind of cell death triggered by intracellular phospholipid peroxidation. Human umbilical vein blood endothelial progenitor cells-Exosomes (EPCs-Exos) affect ferroptosis. This study sought to explore the mechanism of EPCs-Exos in human umbilical vein endothelial cell (HUVEC) ferroptosis. EPCs-Exos were isolated and identified. HUVECs were treated with Erastin at IC50 concentration. Ferroptosis-related indexes and iron ion content were detected using kits. HUVEC migration and angiogenesis before/after ferroptosis inhibitor treatment were observed by cell scratch and angiogenesis assays. After Erastin induction, HUVECs were transfected with miR-30e-5p mimic, or treated with EPCs-Exos and EPCs-Exos transfected with miR-30e-5p inhibitor. miR-30e-5p expression was detected by RT-qPCR. The binding relationship between miR-30e-5p and specificity protein 1 (SP1) was verified by dual-luciferase assay. SP1 expression was detected by Western blot. HUVECs treated with Erastin and EPCs-Exos were transfected with pcDNA3.1-SP1. Protein levels of adenosine monophosphate-activated protein kinase (AMPK) and p-AMPK were detected by Western blot. EPCs-Exos inhibited Erastin-induced HUVEC ferroptosis and endothelial injury. Erastin inhibited miR-30e-5p and EPCs-Exo treatment recovered miR-30e-5p expression. miR-30e-5p was encapsulated in EPCs-Exos. After inhibiting miR-30e-5p in EPCs, the inhibitory effect of EPCs-Exos on HUVEC ferroptosis was attenuated. miR-30e-5p targeted SP1. Overexpression of SP1 partially reversed the effect of EPCs-Exos on improving HUVEC ferroptosis and increasing phosphorylation levels of AMPK. Collectively, EPCs-Exos inhibited Erastin-induced HUVEC ferroptosis by upregulating miR-30e-5p, inhibiting SP1, and activating the AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Ferroptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Piperazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Humanos , MicroRNAs/metabolismo
10.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143796

RESUMO

Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated ß-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34⁺ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.


Assuntos
Angelica sinensis , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Angelica sinensis/química , Angelica sinensis/metabolismo , Biomarcadores , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Fluoruracila/farmacologia , Humanos , Substâncias Protetoras , Espécies Reativas de Oxigênio/metabolismo
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(4): 1178-1186, 2017 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-28823289

RESUMO

OBJECTIVE: To investigate the damage effect of 5-fluorouracil(5-FU) with tumor inhibition concentration on human bone marrow mesenchymal stem cells (hBMSC) and influence of its effect on the hematopoietic cells. METHODS: The Cell Counting Kit-8 was used for determining the sensitivity of breast cancer cell line MCF-7, colon cancer cell line HCT-116 and HS-5 derived from human bone marrow stronal cell line to the different doses of 5-fluorouracil in vitro. After HS-5 was treated with 5-fluorouracil, crystal violet staining assay was used to count the number of colony forming unit-fibroblast, the distribution of cell cycle was analyzed by flow cytometry (FCM), apoptosis was assessed by Annexin V/PI double-stained method and Hoechest staining; DCFH-DA staining was used to analyse the level of reactive oxygen species (ROS), ELISA and immuofluorescence were used to detect cytokines KL, GM-CSF, RANTS and SDF. The hUCB-MNC was counted by trypan blue staining after co-culture with HS-5, FCM was used to detect the cell cycle distribution, ROS level and the ratio of CD34+ cells. The levels of glutathione peroxidase (GSH-Px) and total superoxide dismutase(T-SOD) were measured by enzymatic assay. The senescence associated-ß-galactosidase (SA-ß-Gal) staining was used to detect the senescent hUCB-MNC. RESULTS: 5-Fluorouracil of 12.5 µg/ml-100 µg/ml inhibited the proliferation of MCF-7, HCT-116 and HS-5 cells in dose-dependent and time-dependent manner, among them HS-5 was more sensitive to 5- fluorouracil. After treatment with 5-fluorouracil, the HS-5 cell cycle was blocked. The apoptosis rate and the intracellular ROS level of HS-5 significantly increased. Also HS-5-secreted hematopoietic growth factors decreased and inflammatory chemokines increased. After co-cultured with 5-fluorouracil-treated HS-5, the number of hUCB-MNC and the ratio of CD34+ cells were decreased. hUCB-MNC cell cycle blocked in G1 phase. The antioxidant capacity also decreased and the intracellular ROS level increased significantly. The senescent hUCB-MNC increased. CONCLUSION: 5-Fluorouracil can result in oxidative damage of bone marrow stromal cells and change of function secreting bioactivators, thus induce oxidative stress in hematopoietic cells to initiate stress-induced premature senescence (SIPS).


Assuntos
Células-Tronco Mesenquimais , Células da Medula Óssea , Senescência Celular , Fluoruracila , Transplante de Células-Tronco Hematopoéticas , Humanos
12.
Stem Cells Int ; 2017: 3508907, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491095

RESUMO

Age-related regression in hematopoietic stem/progenitor cells (HSC/HPCs) limits replenishment of the blood and immune system and hence contributes to hematopoietic diseases and declined immunity. In this study, we employed D-gal-induced aging mouse model and observed the antiaging effects of Angelica Sinensis Polysaccharide (ASP), a major active ingredient in dong quai (Chinese Angelica Sinensis), on the Sca-1+ HSC/HPCs in vivo. ASP treatment prevents HSC/HPCs senescence with decreased AGEs levels in the serum, reduced SA-ß-Gal positive cells, and promoted CFU-Mix formation in the D-gal administrated mouse. We further found that multiple mechanisms were involved: (1) ASP treatment prevented oxidative damage as total antioxidant capacity was increased and levels of reactive oxygen species (ROS), 8-OHdG, and 4-HNE were declined, (2) ASP reduced the expression of γ-H2A.X which is a DNA double strand breaks (DSBs) marker and decreased the subsequent ectopic expressions of effectors in p16Ink4a-RB and p19Arf-p21Cip1/Waf senescent pathways, and (3) ASP inhibited the excessive activation of Wnt/ß-catenin signaling in aged HSC/HPCs, as the expressions of ß-catenin, phospho-GSK-3ß, and TCF-4 were decreased, and the cyto-nuclear translocation of ß-catenin was inhibited. Moreover, compared with the positive control of Vitamin E, ASP exhibited a better antiaging effect and a weaker antioxidation ability, suggesting a novel protective role of ASP in the hematopoietic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA