RESUMO
Activated mTORC2/AKT signaling plays a role in hepatocellular carcinoma (HCC). Research has shown that TSC/mTORC1 and FOXO1 are distinct downstream effectors of AKT signaling in liver regeneration and metabolism. However, the mechanisms by which these pathways mediate mTORC2/AKT activation in HCC are not yet fully understood. Amplification and activation of c-MYC is a key molecular event in HCC. In this study, we explored the roles of TSC/mTORC1 and FOXO1 as downstream effectors of mTORC2/AKT1 in c-MYC-induced hepatocarcinogenesis. Using various genetic approaches in mice, we found that manipulating the FOXO pathway had minimal impact on c-MYC-induced HCC. In contrast, loss of mTORC2 inhibited c-MYC-induced HCC, an effect that was completely reversed by ablating TSC2, which activated mTORC1. Additionally, we discovered that p70/RPS6 and 4EBP1/eIF4E act downstream of mTORC1, regulating distinct molecular pathways. Notably, the 4EBP1/eIF4E cascade is crucial for cell proliferation and glycolysis in c-MYC-induced HCC. We also identified centromere protein M (CENPM) as a downstream target of the TSC2/mTORC1 pathway in c-MYC-driven hepatocarcinogenesis, and its ablation entirely inhibited c-MYC-dependent HCC formation. Our findings demonstrate that the TSC/mTORC1/CENPM pathway, rather than the FOXO cascade, is the primary signaling pathway regulating c-MYC-driven hepatocarcinogenesis. Targeting CENPM holds therapeutic potential for treating c-MYC-driven HCC.
RESUMO
AIMS: To investigate the antidepressant role of oligodendrocyte-derived exosomes (ODEXs)-containing sirtuin 2 (SIRT2) and the underlying mechanism both in vivo and in vitro. METHODS: Oligodendrocyte-derived exosomes isolated from mouse serum were administered to mice with chronic unpredictable mild stress (CUMS)-induced depression via the tail vein. The antidepressant effects of ODEXs were assessed through behavioral tests and quantification of alterations in hippocampal neuroplasticity. The role of SIRT2 was confirmed using the selective inhibitor AK-7. Neural stem/progenitor cells (NSPCs) were used to further validate the impact of overexpressed SIRT2 and ODEXs on neurogenesis and synapse formation in vitro. RESULTS: Oligodendrocyte-derived exosome treatment alleviated depressive-like behaviors and restored neurogenesis and synaptic plasticity in CUMS mice. SIRT2 was enriched in ODEXs, and blocking SIRT2 with AK-7 reversed the antidepressant effects of ODEXs. SIRT2 overexpression was sufficient to enhance neurogenesis and synaptic protein expression. Mechanistically, ODEXs mediated transcellular delivery of SIRT2, targeting AKT deacetylation and AKT/GSK-3ß signaling to regulate neuroplasticity. CONCLUSION: This study establishes how ODEXs improve depressive-like behaviors and hippocampal neuroplasticity and might provide a promising therapeutic approach for depression.
Assuntos
Exossomos , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Hipocampo , Neurogênese , Plasticidade Neuronal , Oligodendroglia , Proteínas Proto-Oncogênicas c-akt , Sirtuína 2RESUMO
Introduction: Metabolic-associated fatty liver disease (MAFLD) is a common chronic metabolic disease that seriously threatens human health. The pharmacological activity of unsaturated fatty acid-rich vegetable oil interventions in the treatment of MAFLD has been demonstrated. This study evaluated the pharmacological activity of Polygala tenuifolia Willd, which contains high levels of 2-acetyl-1,3-diacyl-sn-glycerols (sn-2-acTAGs). Methods: In this study, a mouse model was established by feeding a high-fat diet (HFD, 31% lard oil diet), and the treatment group was fed a P. tenuifolia seed oil (PWSO) treatment diet (17% lard oil and 14% PWSO diet). The pharmacological activity and mechanism of PWSO were investigated by total cho-lesterol (TC) measurement, triglyceride (TG) measurement and histopathological observation, and the sterol regulatory element-binding protein-1 (SREBP1), SREBP2 and NF-κB signaling pathways were evaluated by immunofluorescence and Western blot analyses. Results: PWSO attenuated the increases in plasma TC and TG levels. Furthermore, PWSO reduced the hepatic levels of TC and TG, ameliorating hepatic lipid accumulation. PWSO treatment effectively improves the level of hepatitic inflammation, such as reducing IL-6 levels and TNF-α level. Discussion: PWSO treatment inactivated SREBP1 and SREBP2, which are involved in lipogenesis, to attenuate hepatic lipid accumulation and mitigate the inflammatory response induced via the NF-κB signaling pathway. This study demonstrated that PWSO can be used as a relatively potent dietary supplement to inhibit the occurrence and development of MAFLD.
RESUMO
BACKGROUND: Insomnia, inflammation, and depression are often co-occurring conditions. The mechanisms underlying these conditions remain unclear. MATERIALS AND METHODS: We collected microarray datasets of depression and insomnia from GEO and analyzed them for differentially expressed genes (DEGs). We then overlapped the DEGs with a list of inflammatory response-related genes to identify genes associated with all three conditions. We next performed analyses of enrichment analyses, KEGG mapping, and protein-protein interaction to identify hub genes. Furthermore, we established a depression rat model with inflammation and insomnia to validate the potential genes. At last, a two-sample Mendelian randomization (MR) study was conducted to confirm the association of identified target genes with depression outcomes. RESULTS: We obtained 32 common DEGs associated with the depression, insomnia and inflammatory, and found that the PI3K-AKT signaling pathway might be involved in the inflammatory response in insomnia and depression. CREB1, CYBB, FYN, and CCR5 were identified as targets for the next validation. In model rats, the CCR5 and PI3K-AKT pathways were significantly up-regulated, while the model group exhibited significantly lower hippocampal p-CREB protein expression. The MR study suggested a potential causal relationship between CREB1 and the risk of depression (OR = 1.11, p = 0.013). LIMITATIONS: The identified potential genes and pathways require further laboratory and clinical evidence verification. CONCLUSION: We identified four potential inflammatory related-genes (CREB1, CYBB, FYN, and CCR5). CREB1 may be a potential inflammatory response-related biomarker and drug target for depression and insomnia, as validated by the followed rat model and MR study.
Assuntos
Distúrbios do Início e da Manutenção do Sono , Animais , Ratos , Distúrbios do Início e da Manutenção do Sono/genética , Depressão/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Inflamação/genéticaRESUMO
Azvudine (FNC) is a new drug conditionally approved in 2022 for the treatment of coronavirus disease 2019 (COVID-19) in China. However, the exposure level of FNC in COVID-19 patients in clinical practice is still obscure, and there is no liquid chromatography-tandem mass spectrometry (LC-MS/MS) or LC method reported for quantifying the FNC. In this study, a simple, fast, and reliable LC-MS/MS method using L-phenylalanine-D5 (Phe-D5) as the internal standard (IS) was developed for the quantification of FNC in plasma from COVID-19 patients. After simple protein precipitation with methanol, the analyte in the supernatant was separated on Waters Atlantis® T3 (2.1 ×100 mm, 3.0 µm) column with the mobile phase consisting of acetonitrile (ACN) - aqueous solution (containing 0.03% heptafluorobutyric acid and 0.2% formic acid). The mobile phase was delivered at 0.3 mL/min in an isocratic elution program (15:85, V: V). The linear relationship of FNC was good within the calibration range of 2.0 - 2000.0 ng/mL, with the recovery of FNC ranging from 81.37% to 103.31% and the matrix effect was 94.77%- 109.83%. The short-term, long-term, and freeze-thaw stability of the FNC assessed in method was acceptable, and all other items met the requirements of validation of the biological analytical method. Finally, the method was applied to detect the exposure level of FNC in plasma samples from patients diagnosed with COVID-19, and the results, which are within the linear range of the method, showed huge inter-individual variation, supporting the significance of therapeutic drug monitoring of FNC.
RESUMO
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Humanos , Obesidade/metabolismo , Microbioma Gastrointestinal/fisiologia , Redução de Peso , Ácidos e Sais BiliaresRESUMO
Metabolic-associated fatty liver disease (MAFLD) has become a common chronic liver disease, but there is no FDA-approved drug for MAFLD treatment. Numerous studies have revealed that gut microbiota dysbiosis exerts a crucial effect on MAFLD progression. Oroxin B is a constituent of the traditional Chinese medicine Oroxylum indicum (L.) Kurz. (O. indicum), which has the characteristics of low oral bioavailability but high bioactivity. However, the mechanism through which oroxin B improves MAFLD by restoring the gut microbiota balance remains unclear. To this end, we assessed the anti-MAFLD effect of oroxin B in HFD-fed rats and investigated the underlying mechanism. Our results indicated that oroxin B administration reduced the lipid levels in the plasma and liver and lowered the lipopolysaccharide (LPS), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels in the plasma. Moreover, oroxin B alleviated hepatic inflammation and fibrosis. Mechanistically, oroxin B modulated the gut microbiota structure in HFD-fed rats by increasing the levels of Lactobacillus, Staphylococcus, and Eubacterium and decreasing the levels of Tomitella, Bilophila, Acetanaerobacterium, and Faecalibaculum. Furthermore, oroxin B not only suppressed Toll-like receptor 4-inhibitor kappa B-nuclear factor kappa-B-interleukin 6/tumor necrosis factor-α (TLR4-IκB-NF-κB-IL-6/TNF-α) signal transduction but also strengthened the intestinal barrier by elevating the expression of zonula occludens 1 (ZO-1) and zonula occludens 2 (ZO-2). In summary, these results demonstrate that oroxin B could alleviate hepatic inflammation and MAFLD progression by regulating the gut microbiota balance and strengthening the intestinal barrier. Hence, our study suggests that oroxin B is a promising effective compound for MAFLD treatment.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BLRESUMO
Hyperuricemia characterized by high serum levels of uric acid (UA, >6.8 mg/dL) is regarded as a common chronic metabolic disease. When used as a food supplement, naringenin might have various pharmacological activities, including antioxidant, free-radical-scavenging, and inflammation-suppressing activities. However, the effects of naringenin on hyperuricemia and renal inflammation and the underlying mechanisms remain to be elucidated. Here, we comprehensively examined the effects of naringenin on hyperuricemia and the attenuation of renal impairment. Mice were injected with 250 mg/kg of potassium oxonate (PO) and given 5% fructose water to induce hyperuricemia. The pharmacological effects of naringenin (10 and 50 mg/kg) and benzbromarone (positive control group, 20 mg/kg) on hyperuricemic mice were evaluated in vivo. The disordered expression of urate transporters in HK-2 cells was stimulated by 8 mg/dL UA, which was used to determine the mechanisms underlying the effects of naringenin in vitro. Naringenin markedly reduced the serum UA level in a dose-dependent manner and improved renal dysfunction. Moreover, the increased elimination of UA in urine showed that the effects of naringenin were associated with the regulation of renal excretion. Further examination indicated that naringenin reduced the expression of GLUT9 by inhibiting the PI3K/AKT signaling pathway and reinforced the expression of ABCG2 by increasing the abundance of PDZK1 in vivo and in vitro. Furthermore, sirius red staining and western blotting indicated that naringenin plays a protective role in renal injury by suppressing increases in the levels of pro-inflammatory cytokines, including IL-6 and TNF-α, which contribute to the inhibition of the TLR4/NF-κB signaling pathway in vivo and in vitro. Naringenin supplementation might be a potential therapeutic strategy to ameliorate hyperuricemia by promoting UA excretion in the kidney and attenuating the inflammatory response by decreasing the release of inflammatory cytokines. This study shows that naringenin could be used as a functional food or dietary supplement for hyperuricemia prevention and treatment.
Assuntos
Hiperuricemia , Camundongos , Animais , Hiperuricemia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ácido Úrico/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Eliminação Renal , Rim/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Citocinas/metabolismo , Ácido OxônicoRESUMO
BACKGROUND AND AIMS: Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS: The requirement of YAP/TAZ in c-Met/ß-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/ß-Catenin HCCs. YAP is the major Hippo effector in c-Met/ß-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS: Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/genética , Carcinogênese/genética , Mutação , Via de Sinalização Wnt/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Axina/genéticaRESUMO
BACKGROUND: Tanreqing capsules (TRQCs) and Tanreqing injections (TRQIs) are widely used in the treatment of respiratory diseases. In this study, a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous quantification of the main components of Tanreqing, which include chlorogenic acid, ursodeoxycholic acid, chenodeoxycholic acid, and baicalin, in beagle dog plasma to compare their pharmacokinetic parameters. METHODS: Plasma samples were pretreated with protein precipitation. Chromatographic separation was performed on Waters Acquity UPLC HSS T3 (2.1 mm × 100 mm, 1.8 µm) column using a gradient elution with (A) 0.1% (v/v) formic acid aqueous solution and (B) acetonitrile. Six healthy beagles were divided into two groups, and a crossover, comparative pharmacokinetic study of TRQC (0.09 g/kg) and TRQI (0.5 mL/kg) after a single-dose administration or daily doses over 7 days was carried out. One group was administrated a single dose of TRQC and followed continuously for 7 days, whereas the other group was treated with TRQI in the same way. RESULTS: The calibration curves were linear over the ranges of 2.00-1000.00 ng/mL for baicalin, 10.00-5000.00 ng/mL for ursodeoxycholic acid, 1.00-500.00 ng/mLfor chenodeoxycholic acid and chlorogenic acid, respectively. The relative standard deviation of both intra-day and inter-day accuracy is less than 11.23%. The average extraction recovery of all compounds was greater than 82.21%. The major pharmacokinetic parameters of the four compounds were not significantly different between the two formulations (P > 0.05). CONCLUSIONS: The measured levels of the four major components of TRQCs and TRQIs were comparable in these dogs, providing a reference for the clinical application of TRQCs instead of TRQIs.
RESUMO
BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive primary liver tumor with increasing incidence worldwide, dismal prognosis, and few therapeutic options. Mounting evidence underlines the role of the Hippo pathway in this disease; however, the molecular mechanisms whereby the Hippo cascade contributes to cholangiocarcinogenesis remain poorly defined. METHODS: We established novel iCCA mouse models via hydrodynamic transfection of an activated form of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo pathway downstream effector, either alone or combined with the myristoylated AKT (myr-AKT) protooncogene, in the mouse liver. Hematoxylin and eosin staining, immunohistochemistry, electron microscopy, and quantitative real-time RT-PCR were applied to characterize the models. In addition, in vitro cell line studies were conducted to address the growth-promoting roles of TAZ and its paralog YAP. RESULTS: Overexpression of TAZ in the mouse liver triggered iCCA development with very low incidence and long latency. In contrast, co-expression of TAZ and myr-AKT dramatically increased tumor frequency and accelerated cancer formation in mice, with 100% iCCA incidence and high tumor burden by 10 weeks post hydrodynamic injection. AKT/TAZ tumors faithfully recapitulated many of the histomolecular features of human iCCA. At the molecular level, the development of the cholangiocellular lesions depended on the binding of TAZ to TEAD transcription factors. In addition, inhibition of the Notch pathway did not hamper carcinogenesis but suppressed the cholangiocellular phenotype of AKT/TAZ tumors. Also, knockdown of YAP, the TAZ paralog, delayed cholangiocarcinogenesis in AKT/TAZ mice without affecting the tumor phenotype. Furthermore, human preinvasive and invasive iCCAs and mixed hepatocellular carcinoma/iCCA displayed widespread TAZ activation and downregulation of the mechanisms protecting TAZ from proteolysis. CONCLUSIONS: Overall, the present data underscore the crucial role of TAZ in cholangiocarcinogenesis.
Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Via de Sinalização Hippo , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAPRESUMO
Background and aims: Chronic drug-induced liver injury (DILI) is a rare but under-researched adverse drug reaction-related disease, which is highly likely to progress into liver fibrosis and even cirrhosis. In this study, metabolomics was used to screen out characteristic metabolites related to the histological progression of fibrosis in chronic DILI and analyze the metabolic changes during the development of fibrosis to explain the underlying mechanism. Methods: Chronic DILI patients who underwent liver biopsy were divided into different fibrosis grades. Serum was analyzed by untargeted metabolomics to find serological characteristic metabolite fingerprints. The screened fingerprints were validated by the validation group patients, and the identification ability of fingerprints was compared using FibroScan. Results: A total of 31 metabolites associated with fibrosis and 11 metabolites associated with advanced fibrosis were identified. The validation group confirmed the accuracy of the two metabolite fingerprints [area under the curve (AUC) value 0.753 and 0.944]. In addition, the fingerprints showed the ability to distinguish the grades of fibrosis by comparing using FibroScan. The metabolite fingerprint pathway showed that bile acid synthesis is disturbed while lipid metabolism is extremely active, resulting in an overload of lipid metabolites in the occurrence and development of chronic DILI-associated fibrosis. Conclusions: Our metabolomic analysis reveals the unique metabolomic fingerprints associated with chronic DILI fibrosis, which have potential clinical diagnostic and prognostic significances. The metabolomic fingerprints suggest the disturbance of the lipid metabolites as the most important factor in the development of DILI fibrosis.
RESUMO
BACKGROUND & AIMS: YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/ß-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and ß-Catenin cascades in iCCA. METHODS: Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, ß-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine ß-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or ß-Catenin. Immunostaining of total and nonphosphorylated/activated ß-Catenin staining was performed in mouse and human iCCAs. RESULTS: We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, ß-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by ß-Catenin. Importantly, activated/nonphosphorylated ß-Catenin was detected in more than 80% of human iCCAs. CONCLUSION: YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with ß-Catenin. ß-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and ß-Catenin pathways in cholangiocarcinogenesis.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Sinalização YAP , beta Catenina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMO
BACKGROUND & AIMS: Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development. METHODS: The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice. An hepatocyte-specific inducible TTR-CreERT2 KO system was applied to evaluate the role of YAP and TAZ during tumor progression. Expression patterns of YAP, TAZ, c-MYC, and BCL2L12 were analyzed in human HCC samples. RESULTS: We found that the Hippo cascade is inactivated in c-Myc-induced mouse HCC. Intriguingly, TAZ mRNA levels and activation status correlated with c-MYC activity in human and mouse HCC, but YAP mRNA levels did not. We demonstrated that TAZ is a direct transcriptional target of c-MYC. In c-Myc induced murine HCCs, ablation of Taz, but not Yap, completely prevented tumor development. Mechanistically, TAZ was required to avoid c-Myc-induced hepatocyte apoptosis during tumor initiation. The anti-apoptotic BCL2L12 gene was identified as a novel target regulated specifically by YAP/TAZ, whose silencing strongly suppressed c-Myc-driven murine hepatocarcinogenesis. In c-Myc murine HCC lesions, conditional knockout of Taz, but not Yap, led to tumor regression, supporting the requirement of TAZ for c-Myc-driven HCC progression. CONCLUSIONS: TAZ is a pivotal player at the crossroad between the c-MYC and Hippo pathways in HCC. Targeting TAZ might be beneficial for the treatment of patients with HCC and c-MYC activation. LAY SUMMARY: The identification of novel treatment targets and approaches for patients with hepatocellular carcinoma is crucial to improve survival outcomes. We identified TAZ as a transcriptional target of c-MYC which plays a critical role in c-MYC-dependent hepatocarcinogenesis. TAZ could potentially be targeted for the treatment of patients with c-MYC-driven hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/efeitos adversos , Proteínas de Sinalização YAP/efeitos adversos , Animais , Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/efeitos adversos , Proteínas de Ligação a DNA/análise , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Knockout , Estatísticas não Paramétricas , Fatores de Transcrição/efeitos adversos , Fatores de Transcrição/análise , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas de Sinalização YAP/genéticaRESUMO
Hepatocellular carcinoma (HCC) is the sixth most common primary cancer with an unsatisfactory long-term survival. Gain of function mutations of PIK3CA occur in a subset of human HCC. Alpelisib, a selective PIK3CA inhibitor, has been approved by the FDA to treat PIK3CA mutant breast cancers. In this manuscript, we evaluated the therapeutic efficacy of alpelisib, either alone or in combination, for the treatment of HCC. We tested alpelisib in mouse HCC induced by hydrodynamic injection of c-Met/PIK3CA(H1047R) (c-Met/H1047R), c-Met/PIK3CA(E545K) (c-Met/E545K), and c-Met/sgPten gene combinations. Alpelisib slowed down the growth of c-Met/H1047R and c-Met/E545K HCC but was ineffective in c-Met/sgPten HCC. Mechanistically, alpelisib inhibited p-ERK and p-AKT in c-Met/H1047R and c-Met/E545K HCC progression but did not affect the mTOR pathway or genes involved in cell proliferation. In human HCC cell lines transfected with PIK3CA(H1047R), alpelisib synergized with the mTOR inhibitor MLN0128 or the CDK4/6 inhibitor palbociclib to suppress HCC cell growth. In c-Met/H1047R mice, alpelisib/MLN0128 or alpelisib/palbociclib combination therapy caused tumor regression. Our study demonstrates that alpelisib is effective for treating PIK3CA-mutated HCC by inhibiting MAPK and AKT cascades. Furthermore, combining alpelisib with mTOR or CDK4/6 inhibitors has a synergistic efficacy against PIK3CA-mutated HCC, providing novel opportunities for precision medicine against HCC.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Terapia de Alvo Molecular , Tiazóis/uso terapêutico , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Benzoxazóis/farmacologia , Benzoxazóis/uso terapêutico , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação/genética , PTEN Fosfo-Hidrolase/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Tiazóis/farmacologia , Resultado do Tratamento , Carga TumoralRESUMO
BACKGROUND & AIMS: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is upregulated in many tumor types and is a promising target for cancer therapy. Herein, we elucidated the functional role of FAK in intrahepatic cholangiocarcinoma (iCCA) development and progression. METHODS: Expression levels and activation status of FAK were determined in human iCCA samples. The functional contribution of FAK to Akt/YAP murine iCCA initiation and progression was investigated using conditional Fak knockout mice and constitutive Cre or inducible Cre mice, respectively. The oncogenic potential of FAK was further examined via overexpression of FAK in mice. In vitro cell line studies and in vivo drug treatment were applied to address the therapeutic potential of targeting FAK for iCCA treatment. RESULTS: FAK was ubiquitously upregulated and activated in iCCA lesions. Ablation of FAK strongly delayed Akt/YAP-driven mouse iCCA initiation. FAK overexpression synergized with activated AKT to promote iCCA development and accelerated Akt/Jag1-driven cholangiocarcinogenesis. Mechanistically, FAK was required for YAP(Y357) phosphorylation, supporting the role of FAK as a central YAP regulator in iCCA. Significantly, ablation of FAK after Akt/YAP-dependent iCCA formation strongly suppressed tumor progression in mice. Furthermore, a remarkable iCCA growth reduction was achieved when a FAK inhibitor and palbociclib, a CDK4/6 inhibitor, were administered simultaneously in human iCCA cell lines and Akt/YAP mice. CONCLUSIONS: FAK activation contributes to the initiation and progression of iCCA by inducing the YAP proto-oncogene. Targeting FAK, either alone or in combination with anti-CDK4/6 inhibitors, may be an effective strategy for iCCA treatment. LAY SUMMARY: We found that the protein FAK (focal adhesion kinase) is upregulated and activated in human and mouse intrahepatic cholangiocarcinoma samples. FAK promotes intrahepatic cholangiocarcinoma development, whereas deletion of FAK strongly suppresses its initiation and progression. Combined FAK and CDK4/6 inhibitor treatment had a strong anti-cancer effect in in vitro and in vivo models. This combination therapy might represent a valuable and novel treatment against human intrahepatic cholangiocarcinoma.
Assuntos
Proteína-Tirosina Quinases de Adesão Focal/efeitos adversos , Proteínas de Sinalização YAP/efeitos dos fármacos , Animais , California , Colangiocarcinoma/etiologia , Estudos de Coortes , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal/administração & dosagem , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP/administração & dosagemRESUMO
Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.
Assuntos
Neoplasias dos Ductos Biliares/patologia , Fibroblastos Associados a Câncer/patologia , Colangiocarcinoma/patologia , Idoso , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Fibroblastos Associados a Câncer/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colágeno Tipo I/metabolismo , Feminino , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-met/metabolismo , Microambiente TumoralRESUMO
Fibroblasts in the stroma play a critical role in tumor evolution. In this study, we assessed the influence of colonic fibroblasts on colon cancer cells treated with 5-fluorouracil (5-FU), and mouse colon cancer cell lines MC38 and colonic fibroblasts NIH3T3 were used in this study. A sensitive and rapid UHPLC-MS/MS method for the quantitation of 5-FU from the cell and their medium has been successfully developed and validated. The cells were lysed with methanol, and the mixture was evaporated and then redissolved to extract intracellular 5-FU. The analysis was performed on UHPLC-MS/MS using an Atlantis T3-C18 column (3 µm, 2. 1 ∗ 100 mm) and gradient elution with acetonitrile and 0.1% formic acid in water. Method validation included the following parameters: the matrix effect range 88.82%-93.64% and the recovery range 93.52%-94.56%. The intraday and interday precision and accuracy were <11% and within ±6%, and the stability, specificity, carry-over, dilution effect, and linearity all conformed to the criteria. The method was applied to detect the concentration of 5-FU inside cells and cell culture medium. The preliminary results present that NIH3T3 could enhance the drug resistance of MC38 to 5-FU with a decreased intracellular concentration of 5-FU in MC38, which showed a positive relationship with NIH3T3 number.