Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Addict Biol ; 29(3): e13382, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488467

RESUMO

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces addictive behaviour by stimulating increased dopamine release in the nucleus accumbens (NAc). The sarco/endoplasmic reticulum calcium ion transport ATPases (SERCA or ATP2A) is a calcium ion (Ca2+) pump in the endoplasmic reticulum (ER) membrane. SERCA2b is a SERCA subtype mainly distributed in the central nervous system. This study used conditioned place preference (CPP), a translational drug reward model, to observe the effects of SERCA and SERCA2b on METH-CPP in mice. Result suggested that the activity of SERCA was significantly decreased in NAc after METH-CPP. Intraperitoneal SERCA agonist CDN1163 injection or bilateral CDN1163 microinjection in the NAc inhibited METH-CPP formation. SERCA2b overexpression by the Adeno-associated virus can reduce the DA release of NAc and inhibit METH-CPP formation. Although microinjection of SERCA inhibitor thapsigargin in the bilateral NAc did not significantly aggravate METH-CPP, interference with SERCA2b expression in NAc by adeno-associated virus increased DA release and promoted METH-CPP formation. METH reduced the SERCA ability to transport Ca2+ into the ER in SHSY5Y cells in vitro, which was reversed by CDN1163. This study revealed that METH dysregulates intracellular calcium balance by downregulating SERCA2b function, increasing DA release in NAc and inducing METH-CPP formation. Drugs that target SERCA2b may have the potential to treat METH addiction.


Assuntos
Benzamidas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Metanfetamina/metabolismo , Núcleo Accumbens , Cálcio/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/metabolismo
2.
J Ethnopharmacol ; 328: 118059, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is characterized by hyperkeratosis that produces the classic silvery scales, and the pathogenesis of psoriasis involves abnormal proliferation of keratinocytes. Emerging evidence supports that apoptosis regulates keratinocyte proliferation and formation of stratum corneum, which maintains the homeostasis of the skin. Qinzhuliangxue mixture (QZLX) is a representative formula for the treatment of psoriasis, which was earliest recorded in the classic Chinese medicine book Xia's Surgery. In our previous clinical studies, QZLX demonstrated 83.33% efficacy with few side effects in the treatment of psoriasis. Furthermore, our published basic research has also proved that the QZLX mixture effectively inhibits the hyperproliferation of keratinocytes, thus exerting therapeutic effects on psoriasis. However, whether QZLX mixture can regulate keratinocytes apoptosis requires further clarification. OBJECTIVE OF THE STUDY: To investigate the mechanism of QZLX in the treatment of psoriasis from the perspective of keratinocyte apoptosis. MATERIALS AND METHODS: First, psoriasis-like mice with imiquimod (IMQ)-induced were given QZLX intragastric administration and Psoriasis Area Severity Index (PASI) scores were recored for 11 consecutive days to appraise the efficacy. Then, tissue samples were collected for transcriptome analysis. The DEseq2 method detected significantly differentially expressed genes (DEGs), Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway databases were used to analyze the functions and pathway enrichment of DEGs. After that, the therapeutic mechanisms of QZLX in intervening with psoriasis were explored using TUNEL, immunohistochemical staining, and western blotting. RESULTS: QZLX ameliorated the symptoms and pathological characteristics of IMQ-induced psoriasis in mice. The epidermal cell hyperplasia in the skin was inhibited, in accordance with the suppressed expression of PCNA and Ki67 after treatment. Transcriptome sequencing showed that melanoma differentiation associated gene-5 (MDA-5) was downregulated. GO and KEGG enrichment analysis of the signaling pathways indicated that the differentially expressed genes were significantly enriched in apoptosis pathways. Besides, QZLX treatment decreased the apoptosis of keratinocyte as shown by reduced TUNEL-positive cells. As MDA-5 protein levels decreased, so did the expression of the downstream protein Caspase-8, which indicates that the apoptotic pathway was triggered. Furthermore, QZLX therapy might also help to balance the apoptotic Bcl-2 family expression. CONCLUSION: QZLX restrains the apoptosis of keratinocyte in psoriasis-like mice by downregulating the MDA-5 pathway. The restoration of the balance between cell apoptosis and proliferation in the skin may lead to considerable psoriasis relief. Our study reveals the possible molecular processes behind the effects of QZLX therapy on the skin lesions of psoriasis, and lends support to its clinical efficacy.


Assuntos
Psoríase , Dermatopatias , Animais , Camundongos , Psoríase/patologia , Pele , Queratinócitos , Dermatopatias/metabolismo , Imiquimode , Proliferação de Células , Hiperplasia/patologia , Apoptose , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
3.
Colloids Surf B Biointerfaces ; 234: 113724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183870

RESUMO

Both ursolic acid (UA) and sorafenib (Sora) have been generally utilized in cancer treatment, and the combination of the two has also shown a good anti-tumor effect. However, single-agent therapy for Hepatocellular carcinoma (HCC) has the disadvantages of multi-drug resistance, poor water solubility and low bioavailability, and the application of traditional nanocarrier materials is limited due to their low drug loading and low carrier-related toxicity. Therefore, we prepared US NPs with different proportions of UA and Sora by solvent exchange method for achieving synergistic HCC therapy. US NPs had suitable particle size, good dispersibility and storage stability, which synergistically inhibited the proliferation of HepG2 cells, SMMC7721 cells and H22 cells. In addition, we also proved that US NPs were able to suppress the migration of HepG2 cells and SMMC7721 cells and reduce the adhesion ability and colony formation ability of these cells. According to the results, US NPs could degrade the membrane potential of mitochondrial, participate in cell apoptosis, and synergistically induce autophagy. Collectively, the carrier-free US NPs provide new strategies for HCC treatment and new ideas for the development of novel nano-drug delivery systems containing UA and Sora.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Ácido Ursólico , Preparações Farmacêuticas , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral
4.
J Colloid Interface Sci ; 656: 177-188, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989051

RESUMO

The effectiveness of chemotherapeutic agents for hepatocellular carcinoma (HCC) is unsatisfactory because of tumor heterogeneity, multidrug resistance, and poor target accumulation. Therefore, multimodality-treatment with accurate drug delivery has become increasingly popular. Herein, a cell penetrating peptide-aptamer dual modified-nanocomposite (USILA NPs) was successfully constructed by coating a cell penetrating peptide and aptamer onto the surface of sorafenib (Sora), ursolic acid (UA) and indocyanine green (ICG) condensed nanodrug (USI NPs) via one-pot assembly for targeted and synergistic HCC treatment. USILA NPs showed higher cellular uptake and cytotoxicity in HepG2 and H22 cells, with a high expression of epithelial cell adhesion molecule (EpCAM). Furthermore, these NPs caused more significant mitochondrial membrane potential reduction and cell apoptosis. These NPs could selectively accumulate at the tumor site of H22 tumor-bearing mice and were detected with the help of ICG fluorescence; moreover, they retarded tumor growth better than monotherapy. Thus, USILA NPs can realize the targeted delivery of dual drugs and the integration of diagnosis and treatment. Moreover, the effects were more significant after co-administration of iRGD peptide, a tumor-penetrating peptide with better penetration promoting ability or programmed cell death ligand 1 (PD-L1) antibody for the reversal of the immunosuppressive state in the tumor microenvironment. The tumor inhibition rates of USILA NPs + iRGD peptide or USILA NPs + PD-L1 antibody with good therapeutic safety were 72.38 % and 67.91 % compared with control, respectively. Overall, this composite nanosystem could act as a promising targeted tool and provide an effective intervention strategy for enhanced HCC synergistic treatment.


Assuntos
Carcinoma Hepatocelular , Peptídeos Penetradores de Células , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Preparações Farmacêuticas , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Peptídeos Penetradores de Células/química , Antígeno B7-H1/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Bioorg Chem ; 140: 106797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647807

RESUMO

Miliusanes are a class of anticancer lead molecules belonging to meroterpenoids with an 18-carbon skeleton isolated from Miliusa plants. A phytochemical study of the plant M. sinensis was carried out to discover new miliusanes with diverse structural features in order to better understand their structure-activity relationship. As a result, 20 compounds including 12 new ones (7-14 and 17-20) belonging to two sub-classes of miliusanes were isolated and identified from the twigs and leaves of this plant. Their structures, including absolute configurations, were determined by spectroscopic analyses and electronic circular dichroism. The absolute stereochemistry of miliusane structures has also been confirmed for the first time through the single crystal X-ray diffraction analysis of miliusol (1). Bioactivity evaluation showed that some of the miliusane isolates potently inhibit cell growth of several human derived cancer cell lines with IC50 values ranging from 0.52 to 23.5 µM. Compound 11 demonstrated more potent cytotoxic activity than the known miliusol (1) in stomach cancer cells though its structure contains an unconjugated 1, 4-diketone system, which added a new structure-activity feature to miliusanes. The preliminary mechanism of action studies revealed that they could be a class of dual cell migration inhibitor and senescence inducer.


Assuntos
Annonaceae , Humanos , Carbono , Ciclo Celular , Linhagem Celular
6.
J Control Release ; 361: 727-749, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591461

RESUMO

CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Edição de Genes , Tecnologia , Neoplasias/genética , Neoplasias/terapia
7.
Oncologist ; 28(6): 501-509, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36866412

RESUMO

BACKGROUND: Lenvatinib plus pembrolizumab showed significantly improved progression-free and overall survival outcomes compared with sunitinib in patients with advanced renal cell carcinoma in the CLEAR study (NCT02811861). Here, we used CLEAR data to characterize common adverse reactions (ARs; adverse-event preferred terms grouped in accordance with regulatory authority review) associated with lenvatinib plus pembrolizumab and review management strategies for select ARs. MATERIALS AND METHODS: Safety data from the 352 patients who received lenvatinib plus pembrolizumab in the CLEAR study were analyzed. Key ARs were chosen based on frequency of occurrence (≥30%). Time to first onset and management strategies for key ARs were detailed. RESULTS: The most frequent ARs were fatigue (63.1%), diarrhea (61.9%), musculoskeletal pain (58.0%), hypothyroidism (56.8%), and hypertension (56.3%); grade ≥3 severity ARs that occurred in ≥5% of patients were hypertension (28.7%), diarrhea (9.9%), fatigue (9.4%), weight decreased (8.0%), and proteinuria (7.7%). Median times to first onset of all key ARs were within approximately 5 months (approximately 20 weeks) of starting treatment. Strategies for effectively managing ARs included baseline monitoring, drug-dose modifications, and/or concomitant medications. CONCLUSION: The safety profile of lenvatinib plus pembrolizumab was consistent with the known profile of each monotherapy; ARs were considered manageable with strategies including monitoring, dose modifications, and supportive medications. Proactive and prompt identification and management of ARs are important for patient safety and to support continued treatment. CLINICALTRIALS.GOV ID: NCT02811861.


Assuntos
Carcinoma de Células Renais , Hipertensão , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Compostos de Fenilureia/efeitos adversos , Neoplasias Renais/patologia , Fadiga/induzido quimicamente , Diarreia/induzido quimicamente , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
Front Microbiol ; 13: 865644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308396

RESUMO

Hand foot and mouth disease (HFMD) caused by Enterovirus 71 (EV71) infection is still a major infectious disease threatening children's life and health in the absence of effective antiviral drugs due to its high prevalence and neurovirulence. A study of EV71-specific host response might shed some light on the reason behind its unique epidemiologic features and help to find means to conquer EV71 infection. We reported that host heat shock protein A6 (HSPA6) was induced by EV71 infection and involved infection in both Rhabdomyosarcoma (RD) cells and neurogliocytes. Most importantly, we found that EV71 did not induce the expression of other heat shock proteins HSPA1, HSPA8, and HSPB1 under the same conditions, and other HFMD-associated viruses including CVA16, CVA6, CVA10, and CVB1-3 did not induce the upregulation of HSPA6. In addition, EV71 infection enhanced the cytoplasmic aggregation of HSPA6 and its colocalization with viral capsid protein VP1. These findings suggest that HSPA6 is a potential EV71-specific host factor worthy of further study.

9.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268699

RESUMO

Previous studies have reported that recombinant tumor necrosis factor (TNF)-α has powerful antiviral activity but severe systematic side effects. Jasminin is a common bioactive component found in Chinese herbal medicine beverage "Jasmine Tea". Here, we report that jasminin-induced endogenous TNF-α showed antiviral activity in vitro. The underlying TNF-α-inducing action of jasminin was also investigated in RAW264.7 cells. The level of endogenous TNF-α stimulated by jasminin was first analyzed by an enzyme-linked immunosorbent assay (ELISA) from the cell culture supernatant of RAW264.7 cells. The supernatants were then collected to investigate the potential antiviral effect against herpes simplex virus 1 (HSV-1). The antiviral effects of jasminin alone or its supernatants were evaluated by a plaque reduction assay. The potential activation of the PI3K-Akt pathway, three main mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB signaling pathways that induce TNF-α production were also investigated. Jasminin induces TNF-α protein expression in RAW264.7 cells without additional stimuli 10-fold more than the control. No significant up-expression of type I, II, and III interferons; interleukins 2 and 10; nor TNF-ß were observed by the jasminin stimuli. The supernatants, containing jasminin-induced-TNF-α, showed antiviral activity against HSV-1. The jasminin-stimulated cells caused the simultaneous activation of the Akt, MAPKs, and NF-κB signal pathways. Furthermore, the pretreatment of the cells with the Akt, MAPKs, and NF-κB inhibitors effectively suppressed jasminin-induced TNF-α production. Our research provides evidence that endogenous TNF-α can be used as a strategy to encounter viral infections. Additionally, the Akt, MAPKs, and NF-κB signaling pathways are involved in the TNF-α synthesis that induced by jasminin.


Assuntos
Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa , Antivirais/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Biomed Pharmacother ; 137: 111348, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578237

RESUMO

The ergosterol pathway is a prime antifungal target as it is required for fungal survival, yet is not involved in human homeostasis. Methods to study the ergosterol pathway, however, are often time-consuming. The minimum inhibitory concentration (MIC) assay is a simple research tool that determines the lowest concentration at which a novel antimicrobial is active in vitro with limited scope to determine the mechanism of action for a drug. In this study, we show that by adding hydrogen peroxide, an oxidative stressor, or glutathione (GSH), an antioxidant, to modify a commonly performed MIC assay allowed us to screen selectively for new antifungal drugs that target ergosterol biosynthesis in fungi. A human pathogen and dermatophyte, Microsporum gypseum, was used as a test organism. When exposed to ergosterol targeting drugs, the hydrogen peroxide treatment significantly decreased fungal survival by reducing ergosterol in the cell wall, whereas GSH increased survival of M. gypseum. Further, by performing a series of experiments with M. gypseum and Trichophyton rubrum, it was determined that the oxidative stress from hydrogen peroxide causes cell death at different developmental stages based on fungal species. These findings allow us to describe a simple, high-throughput method for simultaneously screening new antifungal drugs for activity and effects on the ergosterol pathway. By using this tool, two isoquinoline alkaloids were discovered to be potent inhibitors of ergosterol biosynthesis in vitro by reducing the amount of ergosterol without affecting the expression of 1,3-ß-glucan. Both compounds also significantly reduced the severity of acanthosis, hyperkeratosis, spongiosis and dermal edema in vivo.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Ergosterol/biossíntese , Ensaios de Triagem em Larga Escala/métodos , Isoquinolinas/farmacologia , Alcaloides/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Arthrodermataceae/citologia , Arthrodermataceae/efeitos dos fármacos , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Modelos Animais de Doenças , Ergosterol/análise , Feminino , Glutationa/farmacologia , Cobaias , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/farmacologia , Isoquinolinas/uso terapêutico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Micélio/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tinha/tratamento farmacológico , Tinha/patologia
11.
Viruses ; 12(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967229

RESUMO

As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.


Assuntos
Fatores Imunológicos/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Antivirais/uso terapêutico , Doença Crônica , Humanos , Fatores Imunológicos/antagonistas & inibidores , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Viroses/terapia , Vírus/classificação
12.
PeerJ ; 7: e7705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598423

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a subtype of esophageal cancer with high incidence and mortality. Due to the poor 5-year survival rates of patients with ESCC, exploring novel diagnostic markers for early ESCC is emergent. Collagen, the abundant constituent of extracellular matrix, plays a critical role in tumor growth and epithelial-mesenchymal transition. However, the clinical significance of collagen genes in ESCC has been rarely studied. In this work, we systematically analyzed the gene expression of whole collagen family in ESCC, aiming to search for ideal biomarkers. METHODS: Clinical data and gene expression profiles of ESCC patients were collected from The Cancer Genome Atlas and the gene expression omnibus databases. Bioinformatics methods, including differential expression analysis, survival analysis, gene sets enrichment analysis (GSEA) and co-expression network analysis, were performed to investigate the correlation between the expression patterns of 44 collagen family genes and the development of ESCC. RESULTS: A total of 22 genes of collagen family were identified as differentially expressed genes in both the two datasets. Among them, COL1A1, COL10A1 and COL11A1 were particularly up-regulated in ESCC tissues compared to normal controls, while COL4A4, COL6A5 and COL14A1 were notably down-regulated. Besides, patients with low COL6A5 expression or high COL18A1 expression showed poor survival. In addition, a 7-gene prediction model was established based on collagen gene expression to predict patient survival, which had better predictive accuracy than the tumor-node-metastasis staging based model. Finally, GSEA results suggested that collagen genes might be tightly associated with PI3K/Akt/mTOR pathway, p53 pathway, apoptosis, cell cycle, etc. CONCLUSION: Several collagen genes could be potential diagnostic and prognostic biomarkers for ESCC. Moreover, a novel 7-gene prediction model is probably useful for predicting survival outcomes of ESCC patients. These findings may facilitate early detection of ESCC and help improves prognosis of the patients.

13.
Food Sci Nutr ; 7(9): 3062-3070, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31572599

RESUMO

Seedpod, the nonedible portion of lotus (Nelumbo nucifera Gaertn.), was reported to be rich in polyphenols. The objective of this study was to investigate the major bioactive polyphenols of the lotus seedpods. The total polyphenol content (TPC) from ethanol extract of lotus seedpod (PELS) was found to be 34.23 µg gallic acid equivalents (GAE)/mg extract. Four polyphenolic compounds were identified in the PELS, comprised of one flavan-3-ol (catechin) and three flavonoids (kaemferol, quercetin and hyperoside). In vitro antioxidant and antiproliferative properties of the PELS were evaluated. PELS exhibited 89.38%, 99.82%, 68.25%, and 95.82% scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, hydroxyl, and 2,2'azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals, respectively, at 1.6 mg/ml. The Fe3+ reducing power of PELS was 0.605 at 0.32 mg/ml, which is comparable to glutathione (GSH). The PELS showed 31.79% metal chelating capacity and 87.79% inhibition of linoleic acid auto-oxidation at 1.6 mg/ml. PELS showed cytotoxicity toward HepG2 and LNcap cell lines in vitro with IC50 values at 44.59 and 11.50 µg/ml, respectively. The findings of this study provide evidences that the inedible lotus seedpod could be a source for natural antioxidants and anticancer agents.

14.
Biomed Pharmacother ; 111: 579-587, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30599319

RESUMO

Dietary phenols are antioxidants with diverse physiological functions that are beneficial for human health. The objective of this research work was to investigate antioxidant activity of p-coumaric acid (p-CA) using four in vitro methods, the protective effects against oxidative stress in PC12 cells, and hypolipidemic effects on High fat-diet (HFD) mice model. The p-CA exhibited moderate antioxidant activity in the selected in vitro assay. The highest chelating activity of p-CA at 50 µg/mL was found to be 52.22%. Pretreatment with p-CA significantly enhanced cell viability of PC12 cell and suppressed AAPH-induced intracellular ROS generation and AAPH-induced LDH release. The hypolipidemic effects of p-CA (100 mg/kg BW) was directly linked to the increased expression of nuclear factor erythroid 2-related factor (Nrf2) by 2.0-fold, Glutathione peroxidase (Gpx) by 3.8-fold, Superoxide dismutase (SOD-1) by 1.6-fold, Heme oxygenase (HO-1) by 1.72-fold and NAD(P)H Quinone Dehydrogenase 1 (NQO-1) by 1.5-fold compared with HFD group. In addition to these effects, p-CA decreased total cholesterol and atherosclerosis index levels, and increased catalase (CAT) level in serum, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) levels in liver as compared HFD group. Administration of p-CA also promoted the recovery of hyperlipidemia steatohepatitis in mice by ameliorating lipid peroxidation. These results suggested that p-CA is a potent antioxidant with potential therapeutic efficacy for treating hyperlipidemia symptoms.


Assuntos
Antioxidantes/uso terapêutico , Hiperlipidemias/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Propionatos/uso terapêutico , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ácidos Cumáricos , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Hiperlipidemias/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Células PC12 , Propionatos/farmacologia , Ratos , Resultado do Tratamento
15.
Molecules ; 23(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563201

RESUMO

The purpose of this research was to investigate the chemical profile, nutritional quality, antioxidant and hypolipidemic effects of Mexican chia seed oil (CSO) in vitro. Chemical characterization of CSO indicated the content of α-linolenic acid (63.64% of total fatty acids) to be the highest, followed by linoleic acid (19.84%), and saturated fatty acid (less than 11%). Trilinolenin content (53.44% of total triacylglycerols (TAGs)) was found to be the highest among seven TAGs in CSO. The antioxidant capacity of CSO, evaluated with ABTS•+ and DPPH• methods, showed mild antioxidant capacity when compared with Tocopherol and Catechin. In addition, CSO was found to lower triglyceride (TG) and low-density lipoprotein-cholesterol (LDL-C) levels by 25.8% and 72.9%respectively in a HepG2 lipid accumulation model. As CSO exhibits these chemical and biological characteristics, it is a potential resource of essential fatty acids for human use.


Assuntos
Compostos Fitoquímicos/química , Óleos de Plantas/química , Salvia/química , Antioxidantes/química , Ácidos Graxos/química , Células Hep G2 , Humanos , Compostos Fitoquímicos/metabolismo , Óleos de Plantas/metabolismo , Sementes/química , Triglicerídeos , Ácido alfa-Linolênico/química
16.
Food Chem Toxicol ; 119: 50-60, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29772268

RESUMO

Pyrrolizidine alkaloids (PAs) are secondary metabolites of plants. PAs have been reported to be hepatotoxic, mutagenic, and carcinogenic; they are a significant group of natural toxins affecting livestock, wildlife, and humans. To date, over 10,000 PAs poisoning cases have been reported worldwide. In recent years, many articles have reported the detection of PAs in various foods, including honey, milk, meat, eggs, tea and salad. This review summarized the contamination of PAs in foods, state of the art detection methods and regulations by different countries and authorities, hoping to propose effective solutions to minimize the consumption of PAs in food.


Assuntos
Análise de Alimentos , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Contaminação de Alimentos , Humanos
17.
Phytomedicine ; 23(6): 641-53, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161405

RESUMO

BACKGROUND: Catharanthus roseus (L.) G. Don consists of a range of dimeric indole alkaloids with significant antitumor activities. These alkaloids have been found to possess apoptosis-inducing activity against tumor cells in vitro and in vivo mediated by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, in which DNA damage and mitochondrial dysfunction play important roles. In this study, a unique bisindole alkaloid named cathachunine, along with five known dimeric indole alkaloids, was obtained from C. roseus and investigated in vitro. PURPOSE: The aim of this study was to investigate the antitumor activity of isolated alkaloids and the mechanism through which cathachunine exerts its antitumor effect. STUDY DESIGN AND METHODS: Cell growth inhibition was assessed by WST-1 and lactate dehydrogenase (LDH) assays in HL60, K562 leukemia cells and EA.hy926 umbilical vein cells. Induction of apoptosis in HL60 cells was confirmed by observation of nuclear morphology, a caspase-3 activity assay and annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) double staining. The intrinsic apoptotic pathway induced by cathachunine was evidenced by B-cell lymphoma 2/Bcl-2-associated X protein (Bcl-2/Bax) dysregulation, loss of mitochondrial membrane potential, translocation of cytochrome c, and cleavage of caspase-3 and poly-ADP ribose polymerase (PARP). Reactive oxygen species (ROS) production after cathachunine treatment was determined by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Cell cycle arrest of the S phase was also observed in HL60 cells after cathachunine treatment. RESULTS: The WST-1 and LDH assays showed that Catharanthus alkaloids were cytotoxic toward human leukemia cells to a greater extent than toward normal human endothelial cells, and the anti-proliferation and pro-apoptosis abilities of cathachunine were much more potent than other previously reported alkaloids. The induction of apoptosis by cathachunine occurred through an ROS-dependent mitochondria-mediated intrinsic pathway rather than an extrinsic pathway, and was regulated by the Bcl-2 protein family. CONCLUSION: An unprecedented bisindole alkaloid cathachunine which lost C-18' and C-19' was isolated from C. roseus. It exerted a potent antitumor effect toward human leukemia cells through the induction of apoptosis via an intrinsic pathway. Thus, this study provides evidence for a new lead compound from a natural source for anti-cancer investigations.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia/tratamento farmacológico , Extratos Vegetais/farmacologia , Antineoplásicos/uso terapêutico , Catharanthus/química , China , Humanos , Células K562/efeitos dos fármacos
18.
Int J Mol Sci ; 16(11): 27978-87, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26610490

RESUMO

Henrin A (1), a new ent-kaurane diterpene, was isolated from the leaves of Pteris henryi. The chemical structure was elucidated by analysis of the spectroscopic data including one-dimensional (1D) and two-dimensional (2D) NMR spectra, and was further confirmed by X-ray crystallographic analysis. The compound was evaluated for its biological activities against a panel of cancer cell lines, dental bacterial biofilm formation, and HIV. It displayed anti-HIV potential with an IC50 value of 9.1 µM (SI = 12.2).


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pteris/química , Fármacos Anti-HIV/intoxicação , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular , Diterpenos do Tipo Caurano/isolamento & purificação , HIV-1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/isolamento & purificação
19.
Int J Dermatol ; 53(10): 1213-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041445

RESUMO

OBJECTIVES: This study was designed to explore the pathogenesis of psoriasis and to identify potential bio-targets. Genome array technology was used to analyze the gene expression profiles of lesional and non-lesional psoriatic skin samples and normal skin samples. METHODS: Gene expression profile GSE14905 was downloaded from the Gene Expression Omnibus (GEO) database. This included skin biopsy samples from normal healthy donors (n = 21), lesional skin biopsy samples from psoriasis patients (n = 33), and non-lesional skin biopsy samples from psoriasis patients (n = 28). Differentially expressed genes (DEGs) were identified using the Limma package in R language. Functions of specific DEGs were predicted by Gene Ontology (GO) enrichment analysis. A protein-protein interaction network was constructed to display the interactions among common DEGs. Finally, DAVID and WebGestalt were used to achieve a functional analysis of common DEGs. RESULTS: Totals of 1020, 562, and 643 genes, respectively, were identified as being differentially expressed in normal versus lesional, normal versus non-lesional, and lesional versus non-lesional samples. The specific DEGs in the three groups were enriched for several GO terms, including mitotic cell cycle, immune response, and response to organic matter. The 40 common DEGs in the three groups may be involved in the defense response pathway in the development of psoriasis. Furthermore, three genes (RGS1, SOCS3, and NAMPT) may play key roles in distinguishing lesional and non-lesional tissues from normal tissues, and 10 genes (PTRRC, ALDH1A3, SAMSA1, C15orf48, ZC3H12A, SOD2, IL8, LTF, RHCG, and IL7R) may play key roles in distinguishing non-lesional from normal and lesional samples. CONCLUSIONS: These genes may be considered as potential diagnostic markers and targets of therapeutics in psoriasis.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Psoríase/genética , Humanos
20.
J Agric Food Chem ; 61(26): 6568-73, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23745668

RESUMO

Panax ginseng C. A. Mey has been used as a traditional medicine and functional food in Asia for thousands of years for its improvement of human immunity and metabolism and its antitumor and antifatigue activities. This study reports the impact of storage conditions and storage period on the quality of P. ginseng. The contents of four major ginsenosides in P. ginseng and phosphorylation activities of Akt of ginseng extracts were affected by both storage conditions and storage period. In contrast, the ATP generation capacity of ginseng extracts was affected by storage conditions, but not by storage period. The results showed that the quality of P. ginseng could be well maintained at a relative humidity between 70% and 90%, and dry conditions might decrease the quality of P. ginseng. Through dual-index evaluation, the present study extended our knowledge on the changes of ginsenosides and bioactivities in P. ginseng with respect to different storage conditions and storage periods.


Assuntos
Qualidade dos Alimentos , Armazenamento de Alimentos , Ginsenosídeos/análise , Panax/química , Animais , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular , Células Cultivadas , China , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ginsenosídeos/farmacologia , Humanos , Panax/crescimento & desenvolvimento , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA