Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958457

RESUMO

Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause 5-10% acute leukemias with poor clinical outcomes. Protein-protein interactions (PPI) between the most frequent MLL fusion partner proteins AF9/ENL and AF4 or histone methyltransferase DOT1L are drug targets for MLL-rearranged (MLL-r) leukemia. Several benzothiophene-carboxamide compounds were identified as novel inhibitors of these PPIs with IC50 values as low as 1.6 µM. Structure-activity relationship studies of 77 benzothiophene and related indole and benzofuran compounds show that a 4-piperidin-1-ylphenyl or 4-pyrrolidin-1-ylphenyl substituent is essential for the activity. The inhibitors suppressed expression of MLL target genes HoxA9, Meis1 and Myc, and selectively inhibited proliferation of MLL-r and other acute myeloid leukemia cells with EC50 values as low as 4.7 µM. These inhibitors are useful chemical probes for biological studies of AF9/ENL, as well as pharmacological leads for further drug development against MLL-r and other leukemias.

2.
Proc Natl Acad Sci U S A ; 120(44): e2307793120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878724

RESUMO

We have previously identified TopBP1 (topoisomerase IIß-binding protein 1) as a promising target for cancer therapy, given its role in the convergence of Rb, PI(3)K/Akt, and p53 pathways. Based on this, we conducted a large-scale molecular docking screening to identify a small-molecule inhibitor that specifically targets the BRCT7/8 domains of TopBP1, which we have named 5D4. Our studies show that 5D4 inhibits TopBP1 interactions with E2F1, mutant p53, and Cancerous Inhibitor of Protein Phosphatase 2A. This leads to the activation of E2F1-mediated apoptosis and the inhibition of mutant p53 gain of function. In addition, 5D4 disrupts the interaction of TopBP1 with MIZ1, which in turn allows MIZ1 to bind to its target gene promoters and repress MYC activity. Moreover, 5D4 inhibits the association of the TopBP1-PLK1 complex and prevents the formation of Rad51 foci. When combined with inhibitors of PARP1/2 or PARP14, 5D4 synergizes to effectively block cancer cell proliferation. Our animal studies have demonstrated the antitumor activity of 5D4 in breast and ovarian cancer xenograft models. Moreover, the effectiveness of 5D4 is further enhanced when combined with a PARP1/2 inhibitor talazoparib. Taken together, our findings strongly support the potential use of TopBP1-BRCT7/8 inhibitors as a targeted cancer therapy.


Assuntos
Proteínas de Ligação a DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Nucleares/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Transporte/metabolismo
3.
Clin Lab ; 69(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436378

RESUMO

BACKGROUND: Prostate cancer (PCa) is challenging to treat. It is necessary to screen for related biological markers to accurately predict the prognosis and recurrence of prostate cancer. METHODS: Three data sets, GSE28204, GSE30521, and GSE69223, from the Gene Expression Omnibus (GEO) database were integrated into this study. After the identification of differentially expressed genes (DEGs) between PCa and normal prostate tissues, network analyses including protein-protein interaction (PPI) network, and weighted gene co-expression network analysis (WGCNA) were used to select hub genes. Gene Ontology (GO) term analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to annotate the functions of DEGs and hub modules of the networks. Survival analysis was performed to validate the correlation between the key genes and PCa relapse. RESULTS: In total, 867 DEGs were identified, including 201 upregulated and 666 downregulated genes. Three hub modules of the PPI network and one hub module of the weighted gene co-expression network were determined. Moreover, four key genes (CNN1, MYL9, TAGLN, and SORBS1) were significantly associated with PCa relapse (p < 0.05). CONCLUSIONS: CNN1, MYL9, TAGLN, and SORBS1 may be potential biomarkers for PCa development.


Assuntos
Biomarcadores Tumorais , Neoplasias da Próstata , Humanos , Masculino , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas/genética , Calponinas
4.
Acta Pharm Sin B ; 12(4): 1662-1670, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847519

RESUMO

Zika virus (ZIKV) causes significant human diseases without specific therapy. Previously we found erythrosin B, an FDA-approved food additive, inhibited viral NS2B-NS3 interactions, leading to inhibition of ZIKV infection in cell culture. In this study, we performed pharmacokinetic and in vivo studies to demonstrate the efficacy of erythrosin B against ZIKV in 3D mini-brain organoid and mouse models. Our results showed that erythrosin B is very effective in abolishing ZIKV replication in the 3D organoid model. Although pharmacokinetics studies indicated that erythrosin B had a low absorption profile, mice challenged by a lethal dose of ZIKV showed a significantly improved survival rate upon oral administration of erythrosin B, compared to vehicle control. Limited structure-activity relationship studies indicated that most analogs of erythrosin B with modifications on the xanthene ring led to loss or reduction of inhibitory activities towards viral NS2B-NS3 interactions, protease activity and antiviral efficacy. In contrast, introducing chlorine substitutions on the isobenzofuran ring led to slightly increased activities, suggesting that the isobenzofuran ring is well tolerated for modifications. Cytotoxicity studies indicated that all derivatives are nontoxic to human cells. Overall, our studies demonstrated erythrosin B is an effective antiviral against ZIKV both in vitro and in vivo.

5.
Eur J Med Chem ; 237: 114407, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512565

RESUMO

Acetylation of histone lysine residues by histone acetyltransferase (HAT) p300 and its paralog CBP play important roles in gene regulation in health and diseases. The HAT domain of p300/CBP has been found to be a potential drug target for cancer. Compound screening followed by structure-activity relationship studies yielded a novel series of 1,4-pyrazine-containing inhibitors of p300/CBP HAT with their IC50s as low as 1.4 µM. Enzyme kinetics and other studies support the most potent compound 29 is a competitive inhibitor of p300 HAT against the substrate histone. It exhibited a high selectivity for p300 and CBP, with negligible activity on other classes of HATs in human. Compound 29 inhibited cellular acetylation of several histone lysine residues and showed strong activity against proliferation of a panel of solid and blood cancer cells. These results indicate it is a novel pharmacological lead for drug development targeting these cancers as well as a useful chemical probe for biological studies of p300/CBP.


Assuntos
Histonas , Neoplasias , Acetilação , Acetiltransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Lisina , Pirazinas/farmacologia , Relação Estrutura-Atividade
6.
J Hematol Oncol ; 15(1): 41, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395864

RESUMO

BACKGROUND: Chromosome translocations involving mixed lineage leukemia 1 (MLL1) cause acute leukemia in most infants and 5-10% children/adults with dismal clinical outcomes. Most frequent MLL1-fusion partners AF4/AFF4, AF9/ENL and ELL, together with CDK9/cyclin-T1, constitute super elongation complexes (SEC), which promote aberrant gene transcription, oncogenesis and maintenance of MLL1-rearranged (MLL1-r) leukemia. Notably, ENL, but not its paralog AF9, is essential for MLL1-r leukemia (and several other cancers) and therefore a drug target. Moreover, recurrent ENL mutations are found in Wilms tumor, the most common pediatric kidney cancer, and play critical roles in oncogenesis. METHODS: Proteolysis-Targeting Chimera (PROTAC) molecules were designed and synthesized to degrade ENL. Biological activities of these compounds were characterized in cell and mouse models of MLL1-r leukemia and other cancers. RESULTS: Compound 1 efficiently degraded ENL with DC50 of 37 nM and almost depleted it at ~ 500 nM in blood and solid tumor cells. AF9 (as well as other proteins in SEC) was not significantly decreased. Compound 1-mediated ENL reduction significantly suppressed malignant gene signatures, selectively inhibited cell proliferation of MLL1-r leukemia and Myc-driven cancer cells with EC50s as low as 320 nM, and induced cell differentiation and apoptosis. It exhibited significant antitumor activity in a mouse model of MLL1-r leukemia. Compound 1 can also degrade a mutant ENL in Wilms tumor and suppress its mediated gene transcription. CONCLUSION: Compound 1 is a novel chemical probe for cellular and in vivo studies of ENL (including its oncogenic mutants) and a lead compound for further anticancer drug development.


Assuntos
Neoplasias Renais , Leucemia Mieloide Aguda , Tumor de Wilms , Animais , Humanos , Camundongos , Carcinogênese , Expressão Gênica , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteólise , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética
7.
Transl Oncol ; 18: 101368, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182954

RESUMO

Clinical outcomes in patients with WHO grade II/III astrocytoma, oligodendroglioma or secondary glioblastoma remain poor. Isocitrate dehydrogenase 1 (IDH1) is mutated in > 70% of these tumors, making it an attractive therapeutic target. To determine the efficacy of our newly developed mutant IDH1 inhibitor, SYC-435 (1-hydroxypyridin-2-one), we treated orthotopic glioma xenograft model (IC-BT142AOA) carrying R132H mutation and our newly established orthotopic patient-derived xenograft (PDX) model of recurrent anaplastic oligoastrocytoma (IC-V0914AOA) bearing R132C mutation. In addition to suppressing IDH1 mutant cell proliferation in vitro, SYC-435 (15 mg/kg, daily x 28 days) synergistically prolonged animal survival times with standard therapies (Temozolomide + fractionated radiation) mediated by reduction of H3K4/H3K9 methylation and expression of mitochondrial DNA (mtDNA)-encoded molecules. Furthermore, RNA-seq of the remnant tumors identified genes (MYO1F, CTC1 and BCL9) and pathways (base excision repair, TCA cycle II, sirtuin signaling, protein kinase A, eukaryotic initiation factor 2 and α-adrenergic signaling) as mediators of therapy resistance. Our data demonstrated the efficacy SYC-435 in targeting IDH1 mutant gliomas when combined with standard therapy and identified a novel set of genes that should be prioritized for future studies to overcome SYC-435 resistance.

8.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696498

RESUMO

Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is an excellent target for developing small-molecule inhibitors. The current strategy for developing HuNoV protease inhibitors is by targeting the enzyme's active site and designing inhibitors that bind to the substrate-binding pockets located near the active site. However, subtle differential conformational flexibility in response to the different substrates in the polyprotein and structural differences in the active site and substrate-binding pockets across different genogroups, hamper the development of effective broad-spectrum inhibitors. A comparative analysis of the available HuNoV protease structures may provide valuable insight for identifying novel strategies for the design and development of such inhibitors. The goal of this review is to provide such analysis together with an overview of the current status of the design and development of HuNoV protease inhibitors.


Assuntos
Antivirais/farmacologia , Desenvolvimento de Medicamentos , Norovirus/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Animais , Sítios de Ligação , Infecções por Caliciviridae/virologia , Domínio Catalítico , Genótipo , Humanos , Modelos Moleculares , Norovirus/efeitos dos fármacos , Norovirus/genética , Peptídeo Hidrolases/genética , Poliproteínas/genética , Inibidores de Proteases/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
9.
Theranostics ; 11(17): 8172-8184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373735

RESUMO

Chromosome translocations involving mixed lineage leukemia (MLL) gene cause acute leukemia with a poor prognosis. MLL is frequently fused with transcription cofactors AF4 (~35%), AF9 (25%) or its paralog ENL (10%). The AHD domain of AF9/ENL binds to AF4, its paralog AFF4, or histone-H3 lysine-79 (H3K79) methyltransferase DOT1L. Formation of AF9/ENL/AF4/AFF4-containing super elongation complexes (SEC) and the catalytic activity of DOT1L are essential for MLL-rearranged leukemia. Protein-protein interactions (PPI) between AF9/ENL and DOT1L/AF4/AFF4 are therefore a potential drug target. Methods: Compound screening followed by medicinal chemistry was used to find inhibitors of such PPIs, which were examined for their biological activities against MLL-rearranged leukemia and other cancer cells. Results: Compound-1 was identified to be a novel small-molecule inhibitor of the AF9/ENL-DOT1L/AF4/AFF4 interaction with IC50s of 0.9-3.5 µM. Pharmacological inhibition of the PPIs significantly reduced SEC and DOT1L-mediated H3K79 methylation in the leukemia cells. Gene profiling shows compound-1 significantly suppressed the gene signatures related to onco-MLL, DOT1L, HoxA9 and Myc. It selectively inhibited proliferation of onco-MLL- or Myc-driven cancer cells and induced cell differentiation and apoptosis. Compound-1 exhibited strong antitumor activity in a mouse model of MLL-rearranged leukemia. Conclusions: The AF9/ENL-DOT1L/AF4/AFF4 interactions are validated to be an anticancer target and compound-1 is a useful in vivo probe for biological studies as well as a pharmacological lead for further drug development.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Animais , Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/efeitos dos fármacos , Proteínas de Fusão Oncogênica/genética , Oncogenes/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/efeitos dos fármacos , Fatores de Elongação da Transcrição/genética
10.
J Hematol Oncol ; 14(1): 56, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823889

RESUMO

Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5-10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein-protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure-function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.


Assuntos
Leucemia/genética , Mapas de Interação de Proteínas/genética , Humanos , Leucemia/patologia , Proteínas de Fusão Oncogênica/genética
11.
J Med Chem ; 64(5): 2777-2800, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33596380

RESUMO

Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 130 nM. Their structure-activity relationships are discussed. The ZVpro inhibitors also inhibit homologous proteases of dengue and West Nile viruses, and their inhibitory activities are correlated. The most potent compounds 47 and 103 potently inhibited Zika virus replication in cells with EC68 values of 300-600 nM and in a mouse model of Zika infection. These compounds represent novel pharmacological leads for drug development against Flavivirus infections.


Assuntos
Antivirais/uso terapêutico , Pirazinas/uso terapêutico , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/uso terapêutico , Proteínas Virais/metabolismo , Infecção por Zika virus/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Animais , Antivirais/síntese química , Linhagem Celular Tumoral , Vírus da Dengue/enzimologia , Humanos , Camundongos , Estrutura Molecular , Pirazinas/síntese química , Inibidores de Serina Proteinase/síntese química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
12.
Proc Natl Acad Sci U S A ; 117(49): 31353-31364, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229578

RESUMO

Progressive remodeling of the heart, resulting in cardiomyocyte (CM) loss and increased inflammation, fibrosis, and a progressive decrease in cardiac function, are hallmarks of myocardial infarction (MI)-induced heart failure. We show that MCB-613, a potent small molecule stimulator of steroid receptor coactivators (SRCs) attenuates pathological remodeling post-MI. MCB-613 decreases infarct size, apoptosis, hypertrophy, and fibrosis while maintaining significant cardiac function. MCB-613, when given within hours post MI, induces lasting protection from adverse remodeling concomitant with: 1) inhibition of macrophage inflammatory signaling and interleukin 1 (IL-1) signaling, which attenuates the acute inflammatory response, 2) attenuation of fibroblast differentiation, and 3) promotion of Tsc22d3-expressing macrophages-all of which may limit inflammatory damage. SRC stimulation with MCB-613 (and derivatives) is a potential therapeutic approach for inhibiting cardiac dysfunction after MI.


Assuntos
Cicloexanonas/farmacologia , Infarto do Miocárdio/fisiopatologia , Piridinas/farmacologia , Receptores de Esteroides/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Testes de Função Cardíaca , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Células RAW 264.7 , RNA/genética , RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
J Hematol Oncol ; 13(1): 50, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404196

RESUMO

Proteolysis-targeting chimera (PROTAC) has been developed to be a useful technology for targeted protein degradation. A bifunctional PROTAC molecule consists of a ligand (mostly small-molecule inhibitor) of the protein of interest (POI) and a covalently linked ligand of an E3 ubiquitin ligase (E3). Upon binding to the POI, the PROTAC can recruit E3 for POI ubiquitination, which is subjected to proteasome-mediated degradation. PROTAC complements nucleic acid-based gene knockdown/out technologies for targeted protein reduction and could mimic pharmacological protein inhibition. To date, PROTACs targeting ~ 50 proteins, many of which are clinically validated drug targets, have been successfully developed with several in clinical trials for cancer therapy. This article reviews PROTAC-mediated degradation of critical oncoproteins in cancer, particularly those in hematological malignancies. Chemical structures, cellular and in vivo activities, pharmacokinetics, and pharmacodynamics of these PROTACs are summarized. In addition, potential advantages, challenges, and perspectives of PROTAC technology in cancer therapy are discussed.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Humanos , Ligantes , Terapia de Alvo Molecular , Neoplasias/metabolismo , Ubiquitinação/efeitos dos fármacos
14.
J Med Chem ; 63(9): 4716-4731, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32314924

RESUMO

Histone acetyltransferase (HAT) p300 and its paralog CBP acetylate histone lysine side chains and play critical roles in regulating gene transcription. The HAT domain of p300/CBP is a potential drug target for cancer. Through compound screening and medicinal chemistry, novel inhibitors of p300/CBP HAT with their IC50 values as low as 620 nM were discovered. The most potent inhibitor is competitive against histone substrates and exhibits a high selectivity for p300/CBP. It inhibited cellular acetylation and had strong activity with EC50 of 1-3 µM against proliferation of several tumor cell lines. Gene expression profiling in estrogen receptor (ER)-positive breast cancer MCF-7 cells showed that inhibitor treatment recapitulated siRNA-mediated p300 knockdown, inhibited ER-mediated gene transcription, and suppressed expression of numerous cancer-related gene signatures. These results demonstrate that the inhibitor is not only a useful probe for biological studies of p300/CBP HAT but also a pharmacological lead for further drug development targeting cancer.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Tiofenos/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
15.
Commun Biol ; 3(1): 165, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265480

RESUMO

As approximately 70% of human breast tumors are estrogen receptor α (ERα)-positive, estrogen and ERα play essential roles in breast cancer development. By interrupting the ERα signaling pathway, endocrine therapy has been proven to be an effective therapeutic strategy. In this study, we identified a mechanism by which Transcription Start Site (TSS)-associated histone H3K27 acetylation signals the Super Elongation Complex (SEC) to regulate transcriptional elongation of the ESR1 (ERα) gene. SEC interacts with H3K27ac on ESR1 TSS through its scaffold protein AFF4. Depletion of AFF4 by siRNA or CRISPR/Cas9 dramatically reduces expression of ESR1 and its target genes, consequently inhibiting breast cancer cell growth. More importantly, a AFF4 mutant which lacks H3K27ac interaction failed to rescue ESR1 gene expression, suggesting H3K27 acetylation at TSS region is a key mark bridging the transition from transcriptional initiation to elongation, and perturbing SEC function can be an alternative strategy for targeting ERα signaling pathway at chromatin level.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Elongação da Transcrição Genética , Acetilação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/genética , Humanos , Células MCF-7 , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
16.
PLoS One ; 14(5): e0216203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048839

RESUMO

Transcription factor RUNX1 and its binding partner CBFß play a critical role in gene regulation for hematopoiesis. Mutations of RUNX1 cause ~10% of acute myeloid leukemia (AML) with a particularly poor prognosis. The current paradigm for the leukemogenesis is that insufficient activity of wild-type (WT) RUNX1 impairs hematopoietic differentiation. The majority of mutant RUNX1 proteins lose the DNA-binding affinity and inhibit WT RUNX1 by depletion of CBFß. Here, isothermal titration calorimetry (ITC) was used to quantitatively study the interactions of WT and three clinical mutant RUNX1, CBFß and DNA. Our data show that the binding of RUNX1 to DNA is enthalpy-driven, and the affinity decreases in the order of WT > S114L > R139Q >> K83E, which support previous observations and conclusion. To find potentially beneficial RUNX1 mutations that could increase the overall RUNX1 activity, K83R and H179K mutations of RUNX1 were designed, using structure-based computational modeling, and found to possess significantly higher DNA-binding affinities than does WT RUNX1. K83R and H179K mutant RUNX1 could therefore be protein-based RUNX1 activators.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Calorimetria/métodos , Diferenciação Celular/genética , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Am Chem Soc ; 141(17): 6832-6836, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017399

RESUMO

Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.


Assuntos
Antivirais/uso terapêutico , Inibidores de Proteases/uso terapêutico , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Infecção por Zika virus/tratamento farmacológico , Sítio Alostérico , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Aminopiridinas/uso terapêutico , Animais , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Cristalografia por Raios X , Vírus da Dengue/enzimologia , Descoberta de Drogas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Pirazinas/síntese química , Pirazinas/metabolismo , Pirazinas/uso terapêutico , Serina Endopeptidases/química , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
19.
PLoS One ; 14(1): e0210547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633761

RESUMO

New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.


Assuntos
Antibacterianos/farmacologia , Ciclopirox/farmacologia , Escherichia coli/efeitos dos fármacos , Ferro/metabolismo , Açúcares/análise , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobactina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Genes Bacterianos/genética , Klebsiella/efeitos dos fármacos , Klebsiella/genética , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Sideróforos/metabolismo
20.
Theranostics ; 8(8): 2189-2201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721072

RESUMO

Acute myeloid leukemia (AML) is a major blood cancer with poor prognosis. New therapies are needed to target oncogene-driven leukemia stem cells, which account for relapse and resistance. Chromosome translocation t(8;21), which produces RUNX1-ETO (R-E) fusion oncoprotein, is found in ~13% AML. R-E dominance negatively inhibits global gene expression regulated by RUNX1, a master transcription factor for hematopoiesis, causing increased self-renewal and blocked cell differentiation of hematopoietic progenitor cells, and eventually leukemia initiation. Methods: Connectivity-Map followed by biological activity testing were used to identify candidate compounds that can inhibit R-E-mediated gene transcription. Molecular mechanistic studies were also performed. Results: Glucocorticoid drugs, such as betamethasone and dexamethasone, were found to exhibit potent and selective in vitro and in vivo activities against R-E leukemia, as well as strong synergy when combined with chemotherapeutics. Microarray analysis showed that treatment with glucocorticoids significantly inhibited R-E's activity and reactivated that of RUNX1. Such gene expression changes caused differentiation and apoptosis of R-E leukemia cells. Our studies also show a possible molecular mechanism for the targeted therapy. Upon treatment with a glucocorticoid drug, more glucocorticoid receptor (GR) was translocated into the nucleus and bound to DNA, including promoters of RUNX1 target genes. GR was found to associate with RUNX1, but not R-E. This interaction increased binding of RUNX1 to DNA and reduced that of R-E, shifting to a RUNX1 dominance. Conclusion: Glucocorticoid drugs represent a targeted therapy for AML with chromosome translocation t(8:21). Given their high activity, favorable human pharmacokinetics as well as synergy with chemotherapeutics, glucocorticoids could be clinically useful to treat R-E AML.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 8/genética , Glucocorticoides/farmacologia , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/metabolismo , Translocação Genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Dexametasona/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , RNA Longo não Codificante , Receptores de Glucocorticoides/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA