Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442749

RESUMO

The extensive utilization of mulch films in agricultural settings, coupled with the persistence of microplastic remnants in soil following the natural degradation of plastics, has given rise to detrimental microplastic impacts on crops. Arsenic (As) contamination in the environment is known to accumulate in crops through aquatic pathways or soil. Garlic (Allium sativum L.), a globally popular crop and seasoning, contains alliin, a precursor of its flavor compounds with medicinal properties. While alliin exhibits antimicrobial and antioxidant effects in garlic, its response to microplastics and arsenic has not been thoroughly investigated, specifically in terms of microplastic or As uptake. This study aimed to explore the impact of varied stress concentrations of microplastics on the toxicity, migration, and accumulation of As compounds. Results demonstrated that polystyrene (PS) fluorescent microspheres, with an 80 nm diameter, could permeate garlic bulbs through the root system, accumulating within vascular tissues and intercellular layers. Low concentrations of PS (10 and 20 mg L-1) and As (2 mg L-1) mitigated the production and accumulation of reactive oxygen species (ROS) and antioxidant enzymes in garlic. Conversely, garlic exhibited reduced root vigor, substance uptake, and translocation when treated with elevated As concentrations (4 mg L-1) in conjunction with PS concentrations of 40 and 80 mg L-1. An escalation in PS concentration facilitated As transport into bulbs but led to diminished As accumulation and biomass in the root system. Notably, heightened stress levels weakened garlic's antioxidant defense system, encompassing sulfur allicin and phytochelatin metabolism, crucial for combating the phytotoxicity of PS and As. In summary, PS exerted a detrimental influence on garlic, exacerbating As toxicity. The findings from this study offer insights for subsequent investigations involving Liliaceae plants.


Assuntos
Arsênio , Cisteína/análogos & derivados , Alho , Antioxidantes/metabolismo , Alho/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Solo
2.
Sci Total Environ ; 924: 171633, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471591

RESUMO

Micro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals. Yet, the possible effects of heavy metals on MP/NP transport and toxicity within co-contaminated systems are still not well-understood. In this study, we conducted split-root experiments to explore the transport and toxicity of polystyrene (PS) particles of varying sizes in parsley seedlings, both with and without the addition of cadmium (Cd). Both the PS-NPs (100 nm) and PS-MPs (300 nm) traveled from the PS-spiked roots (Roots-1) to the non-PS-spiked roots (Roots-2), with or without Cd, possibly because of phloem transport. Furthermore, the presence of Cd reduced the accumulation and movement of PS-NP/MP in the roots, likely due to the increased positive charge (Cd2+) on the PS surface. PS-NPs/MPs in both Roots-1 and Roots-2 were observed using transmission electron microscopy (TEM). When Cd was added to either Roots-1 (PS + Cd|H) or Roots-2 (PS|Cd), there was a minor reduction in the chlorophyll a and carotenoids content in leaves with PS|H. The adverse impacts of MPs|H on both indicators were influenced by the MP concentration. However, chlorophyll b significantly increased in the PS|H, PS + Cd|H, and PS|Cd treatments. Consequently, the chlorophyll a/b ratio declined, indicating inhibition of photosynthesis. The dehydrogenase content showed a minor change in Roots-1 and Roots-2 without Cd stress, whereas it significantly decreased on the Cd-spiked side and subsequently inhibited root growth. In contrast, the marked rise in glutathione (GSH) levels within Cd-spiked roots suggested, based on Gaussian analysis, that GSH and Cd chelation were instrumental in mitigating Cd toxicity. When Cd was introduced to both Roots-1 and Roots-2 simultaneously (PS + Cd|Cd), the aforementioned index showed a notable decline.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Poliestirenos/toxicidade , Clorofila A , Petroselinum , Ecossistema , Glutationa , Plásticos
3.
J Hazard Mater ; 468: 133857, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402685

RESUMO

As emerging environmental pollutants, microplastics have become a crucial focus in environmental science research. Despite this, the impact of microplastics on soil in flooding conditions remains largely unexplored. Addressing this gap, our study examined the influence of polystyrene (PS) and polyphenylene sulfide (PPS) on the microbial populations in black soil, meadow soil, and paddy soil under flooded conditions. Given the significant regulatory influence exerted by microorganisms on sulfur transformations, our study was primarily focused on evaluating the microbial contributions to alterations in soil sulfur species. Our findings revealed several notable trends: In black soil, both PS and PPS led to a marked increase in the abundance of γ-proteobacteria and Subgroup_6, while reducing Clostridia. Ignavibacteria were found to be lower under PPS compared to PS. In meadow soil, the introduction of PPS resulted in increased levels of KD4-96 and γ-proteobacteria, while α-proteobacteria decreased. Chloroflexia under PPS was observed to be lower than under PS conditions. In paddy soil, our study identified a significant rise in Bacteroidia and Ignavibacteria, accompanied by a decrease in α-proteobacteria and γ-proteobacteria. γ-proteobacteria levels under PPS were notably higher than those under PS conditions. These shifts in microbial communities induced by both PS and PPS had a direct impact on adenosine 5'-phosphosulfate reductase, sulfite reductase, and polysulfide dioxygenase. Consequently, these changes led to soil organic sulfur decrease and sulfide increase. This study not only offers a theoretical framework but also provides empirical evidence for understanding the effects of microplastics on soil microorganisms and their role in regulating nutrient cycling, particularly in flood-prone conditions. Furthermore, this study underscores the importance of ensuring an adequate supply of sulfur in agricultural practices, such as rice and lotus root cultivation, to support optimal crop growth in the presence of microplastic pollution.


Assuntos
Gammaproteobacteria , Oryza , Solo , Plásticos , Microplásticos , Inundações , Bactérias/genética , Enxofre
4.
J Hazard Mater ; 465: 133432, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219596

RESUMO

Microplastics can potentially affect the physical and chemical properties of soil, as well as soil microbial communities. This could, in turn, influence soil sulfur REDOX processes and the ability of soil to supply sulfur effectively. However, the specific mechanisms driving these effects remain unclear. To explore this, soil microcosm experiments were conducted to assess the impacts of polystyrene (PS) and polyphenylene sulfide (PPS) microplastics on sulfur reduction-oxidation (REDOX) processes in black, meadow, and paddy soils. The findings revealed that PS and PPS most significantly decreased SO42- in black soil by 9.4%, elevated SO42- in meadow soil by 20.8%, and increased S2- in paddy soil by 20.5%. PS and PPS microplastics impacted the oxidation process of sulfur in soil by influencing the activity of sulfur dioxygenase, which was mediated by α-proteobacteria and γ-proteobacteria, and the oxidation process was negatively influenced by soil organic matter. PS and PPS microplastics impacted the reduction process of sulfur in soil by influencing the activity of adenosine-5'-phosphosulfate reductase, sulfite reductase, which was mediated by Desulfuromonadales and Desulfarculales, and the reduction process was positively influenced by soil organic matter. In addition to their impacts on microorganisms, it was found that PP and PPS microplastics directly influenced the structure of soil enzymes, leading to alterations in soil enzyme activity. This study sheds light on the mechanisms by which microplastics impact soil sulfur REDOX processes, providing valuable insights into how microplastics influence soil health and functioning, which is essential for optimizing crop growth and maximizing yield in future agricultural practices.


Assuntos
Microplásticos , Solo , Plásticos , Agricultura , Poliestirenos , Enxofre
5.
J Hazard Mater ; 464: 132942, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992502

RESUMO

Microplastics can affect the physicochemical properties of soil and soil microorganisms, potentially resulting in changes in the soil sulfur mineralization and its capacity to supply available sulfur. However, the specific mechanisms underlying these effects remain unclear. We performed soil microcosm experiments, in which the effects of polystyrene (PS) and polyphenylene sulfide (PPS) microplastics on sulfur mineralization were examined in black, meadow, and paddy soils under flooded and dry conditions. Under dry condition, the presence of PS and PPS microplastics impeded sulfur (S) mineralization in black and paddy soils, but promoted sulfur mineralization in meadow soil. The size of microplastics was identified as the primary factor influencing sulfur mineralization in black soil, while in meadow soil, it was influenced by the microplastics type. In the case of paddy soil, the concentration of microplastics was the key factor affecting sulfur mineralization. During the flooding period, PS and PPS microplastics in black and paddy soils curtailed sulfur mineralization, however expedited sulfur mineralization in meadow soil, with PS enhancing soil sulfur mineralization more pronouncedly than PPS in black soil. The type and concentration of microplastics were identified as the main factors affecting sulfur mineralization in black soil, while in paddy soil, it was influenced by the size of microplastics. The principal regulating factors of soil sulfur mineralization were the sulphatase and arylsulfatase enzymes produced by Actinobacteria, Xanthomonadales, and Rhizobiales microorganisms, while organic matter and Olsen-P also had an influential role. Additionally, microplastics directly affected the structure of soil enzymes, thereby altering soil enzyme activities. This study provided insights into the mechanism by which microplastics affect soil sulfur mineralization, offering significant implications for assessing the influence of microplastics on soil sulfur availability and making informed decisions about sulfur application in future agricultural practices.


Assuntos
Oryza , Solo , Solo/química , Microplásticos , Plásticos , Enxofre
6.
Chemosphere ; 342: 140157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716553

RESUMO

The perilousness of arsenic and cadmium (As-Cd) toxicity in water and soil presents a substantial hazard to the ecosystem and human well-being. Additionally, this metal (loids) (MLs) can have a deleterious effect on rice quality and yield, owing to the existence of toxic stress. In response to the pressing concern of reducing the MLs accumulation in rice grain, this study has prepared magnesium-manganese-modified corn-stover biochar (MMCB), magnesium-manganese-modified eggshell char (MMEB), and a combination of both (MMCEB). To test the effectiveness of these amendments, several pot trials were conducted, utilizing 1% and 2% application rates. The research discovered that the MMEB followed by MMCEB treatment at a 2% rate yielded the most significant paddy and rice quality, compared to the untreated control (CON) and MMCB. MMEB and MMCEB also extensively decreased the MLs content in the grain than CON, thereby demonstrating the potential to enrich food security and human healthiness. In addition, MMEB and MMCEB augmented the microbial community configuration in the paddy soil, including As-Cd detoxifying bacteria, and decreased bioavailable form of the MLs in the soil compared to the CON. The amendments also augmented Fe/Mn-plaque which captured a considerable quantity of As-Cd in comparison to the CON. In conclusion, the utilization of multifunctional biochar, such as MMEB and MMCEB, is an encouraging approach to diminish MLs aggregation in rice grain and increase rice yield for the reparation of paddy soils via transforming microbiota especially enhancing As-Cd detoxifying taxa, thereby improving agroecology, food security, and human and animal health.

7.
ACS Omega ; 8(28): 24912-24921, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483186

RESUMO

The utilization of high-efficiency adsorption materials to reduce cadmium pollution in aquatic environments is the focus of current environmental remediation research. Straw waste and sludge, which are available in huge amounts, can be best utilized in the preparation of environmental remediation materials. In this study, six types of biochar (SBC, CBC, DBC, SD1BC, SRDBC, and SCDBC) were prepared from straw and sludge by co-pyrolysis, and their cadmium adsorption mechanisms were explored. Cd(II) adsorption isotherms and kinetics on the biochar were determined and fitted to different models. Kinetic modeling was used to characterize the Cd(II) adsorption of biochar, and findings revealed the process of sorption followed pseudo-second-order kinetics (R2 > 0.96). The Langmuir model accurately represented the isotherms of adsorption, indicating that the process was monolayer and controlled by chemical adsorption. SCDBC had the highest capacity for Cd(II) adsorption (72.2 mg g-1), 1.5 times greater than that of sludge biochar, and 3 times greater than that of corn straw biochar. As the pH level rose within the range of pH 5.0 to 7.0 and the ionic strength decreased, the adsorption capacity experienced an increase. SCDBC contained CaCO3 mineral crystals before Cd(II) adsorption, and CdCO3 was found in SCDBC after adsorbing Cd(II) via X-ray diffraction analysis; the peak of Cd could be observed by Fourier transform infrared spectroscopy after the adsorption of Cd(II). The possible adsorption of Cd(II) by SCDBC occurred primarily via surface complexation with active sorption sites, precipitation with inorganic anions, and coordination with π electrons. Collectively, the study suggested that the six types of biochar, particularly SCDBC, could be used as highly efficient adsorbents for Cd(II) removal from aquatic environments.

8.
Environ Pollut ; 306: 119349, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487467

RESUMO

Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb2+ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 µg g-1, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb2+ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb2+, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb2+. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O2- and H2O2, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.


Assuntos
Metais Pesados , Taraxacum , Peróxido de Hidrogênio/farmacologia , Chumbo/toxicidade , Metais Pesados/farmacologia , Microplásticos , Plásticos/farmacologia , Poliestirenos/toxicidade , Plântula
9.
Ecotoxicol Environ Saf ; 225: 112755, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500388

RESUMO

Biochar (BC) derived from agricultural biomass is effective at immobilizing phthalate in the agricultural soil environment. In this study, we assessed the effects of 0.5%, 1%, and 2% BC and Fe-Mn oxide-modified biochar (FMBC) addition on dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) residues and biochemical characteristics in the rhizosphere soil of mature wheat polluted with DBP and DEHP using a pot experiment. Scanning electron microscopy showed that the surfaces and pores of BC and FMBC adhered soil mineral particles after remediation. Therefore, DBP and DEHP residues were increased in BC- and FMBC-treated soils. Illumina HiSeq sequencing showed that, compared with the control, BC and FMBC addition significantly enhanced the relative abundance of Firmicutes and reduced Proteobacteria. The abundance of Sphenodons and Pseudomonas, which degrade phthalates, tended to be higher in FMBC-amended soils than in BC-amended and control soils. This result may be related to an increase in available nutrients and organic matter following BC and FMBC application. Subsequently, the changes in soil bacterial abundance and community structure induced an increase in polyphenol oxidase, ß-glucosidase, neutral phosphatase, and protease activity in BC and FMBC remediation. In comparison with the BC treatment, FMBC addition had a significantly positive effect on enzyme activity, and the microbial structure and was therefore more effective at immobilizing DBP and DEHP in the soil. Thus, our findings strongly suggest that FMBC is a reliable remediation material for phthalate-contaminated soil.


Assuntos
Ácidos Ftálicos , Solo , Carvão Vegetal , Óxidos
10.
Environ Pollut ; 287: 117600, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153605

RESUMO

Sulfate (SO4•-) and hydroxyl-based (HO•) radical are considered potential agents for As(III) removal from aquatic environments. We have reported the synergistic role of SO4•- and HO• radicals for As(III) removal via facile synthesis of biochar-supported SO4•- species. MoS2-modified biochar (MoS2/BC), iron oxide-biochar (FeOx@BC), and MoS2-modified iron oxide-biochar (MoS2/FeOx@BC) were prepared and systematically characterized to understand the underlying mechanism for arsenic removal. The MoS2/FeOx@BC displayed much higher As(III) adsorption (27 mg/g) compared to MoS2/BC (7 mg/g) and FeOx@BC (12 mg/g). Effects of kinetics, As(III) concentration, temperature, and pH were also investigated. The adsorption of As(III) by MoS2/FeOx@BC followed the Freundlich adsorption isotherm and pseudo-second-order, indicating multilayer adsorption and chemisorption, respectively. The FTIR and XPS analysis confirmed the presence of Fe-O bonds and SO4 groups in the MoS2/FeOx@BC. Electron paramagnetic resonance (EPR) and radical quenching experiments have shown the generation of SO4•- radicals as predominant species in the presence of MoS2 and FeOx in MoS2/FeOx@BC via radical transfer from HO• to SO42-. The HO• and SO4•- radicals synergistically contributed to enhanced As(III) removal. It is envisaged that As(III) initially adsorbed through electrostatic interactions and partially undergoes oxidation, which is finally adsorbed to MoS2/FeOx@BC after being oxidized to As(V). The MoS2/FeOx@BC system could be considered a novel material for effective removal of As(III) from aqueous environments owing to its cost-effective synthesis and easy scalability for actual applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Dissulfetos , Compostos Férricos , Ferro , Cinética , Molibdênio , Água , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 284: 117179, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33906035

RESUMO

A pot experiment was carried out on brown soil polluted by dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) to investigate the effects of biochar (BC) derived from corn straw and Fe-Mn oxide modified biochar composites (FMBC) on the bioavailability of DBP and DEHP, as well as ecosystem responses in rhizosphere soil after wheat ripening. The results indicate that the application of BC and FMBC significantly increases soil organic matter, pH, available nitrogen (AN), Olsen phosphorus, and available potassium (AK); reduces the bioavailability of DBP and DEHP; enhances the activities of dehydrogenase, urease, protease, ß-glucosidase, and polyphenol oxidase; and decreases acid phosphatase activity. No changes in richness and diversity, which were measured by Illumina MiSeq sequencing, were observed following BC and FMBC application. The bacterial community structure and composition varied with DBP/DEHP concentrations and BC/FMBC additions in a nonsystematic way and no significant trends were observed. In addition, FMBC exhibited better performance in increasing soil properties and decreasing the bioavailability of DBP and DEHP compared with BC. Hence, the FMBC amendment may be a promising way of developing sustainable agricultural environmental management.


Assuntos
Poluentes do Solo , Triticum , Carvão Vegetal , Ecossistema , Ácidos Ftálicos , Solo , Poluentes do Solo/análise
12.
Environ Sci Pollut Res Int ; 28(26): 34344-34354, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644839

RESUMO

A detailed study of nanomaterials has revealed their broad application prospects. However, the presence of carbon nanotubes (CNTs) in the environment has been increasing and has aroused concerns regarding their toxicity to crops when combined with heavy metals. In the present study, the effects of Cd on the photosynthetic capacity and antioxidant activity of wheat seedlings in the presence of single-walled CNTs (SW) and multi-walled CNTs (MW) were investigated. Our results indicated that SW (5-40 mg L-1) and MW (10-40 mg L-1) significantly increased the oxidative stress response of wheat seedlings to Cd. Compared with Cd alone, CNTs combined with Cd decreased net photosynthetic rate, stomatal conductance, transpiration rate, primary maximum photochemical efficiency of photosystem II, actual quantum yield, photosynthetic electron transport rate, root canal protein, and ribulose-1,5-bisphosphate carboxylase/oxygenase content. Moreover, combined treatments increased the content of superoxide anion, superoxide dismutase, guaiacol peroxidase, cytochrome, and malondialdehyde in wheat seedlings. Moreover, membrane lipid peroxidation was aggravated, causing serious damage to the wheat membrane system. In addition, the toxicity of the SW treatment and the combined treatment with SW and Cd was higher than that of the MW treatment.


Assuntos
Nanotubos de Carbono , Plântula , Antioxidantes , Cádmio/toxicidade , Fotossíntese , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Triticum/metabolismo
13.
Environ Sci Pollut Res Int ; 28(26): 34979-34989, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661497

RESUMO

The purpose of this study was to develop a MoS2-impregnated biochar (MoS2@BC) via hydrothermal reaction for adsorption of cadmium (Cd) from an aqueous solution. The prepared adsorbents were characterized, and their abilities to remove Cd(II) were evaluated. The Langmuir and pseudo-second-order models better described the removal of Cd(II) by MoS2@BC. The prepared MoS2@BC exhibited excellent monolayer adsorption capacity. The S-containing functional groups on MoS2@BC enhanced the adsorption of Cd(II). Multiple Cd(II) sorption mechanisms were identified; including Cd(II)-π interactions, ion exchange, electrostatic interaction, and complexation. The dominant mechanism involved Cd-O (38.3%) bonds and Cd-S complexation (61.7%) on MoS2@BC. The as-prepared MoS2@BC is both economical and efficient, making it an excellent material for environmental Cd(II) remediation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio/análise , Carvão Vegetal , Cinética , Molibdênio , Poluentes Químicos da Água/análise
14.
Ecotoxicol Environ Saf ; 208: 111624, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396144

RESUMO

Phthalate esters (PAEs), such as dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), are used extensively as additives and plasticizers, and have become ubiquitous in the environment. PAEs in the soil could have adverse effects on crop plants as well as humans via accumulations in food chain. Thus, it is important to explore strategies to reduce the bioavailability of phthalate esters. We investigated the effects of Fe-Mn oxide-modified biochar composite (FMBC) applications on the quality of wheat grown in DBP- and DEHP-polluted brown soil. The application of FMBC and biochar (BC) increased the wheat grain biomass by 9.71-223.01% and 5.40-120.15% in the DBP-polluted soil, and 10.52-186.21% and 4.50-99.53% in the DEHP-spiked soil in comparison to the controls. All FMBC treatments were better than the BC treatments, in terms of decreasing DBP and DEHP bioavailability for the wheat grains. The activities of the glutamine synthetase and glutamic-pyruvic transaminase in the flag leaves at the filling stage and of granule-bound starch synthase, soluble starch synthase, and adenosine diphosphate-glucose pyrophosphorylase in the grains at maturity increased significantly with increases in either the BC or FMBC applications. This, in turn, increased the starch, protein, and amino acid content in the wheat grains. Compared with the BC treatment, the FMBC amendment induced only slight increases in the aforementioned factors. This study offers novel insights into potential strategies for decreasing PAEs bioavailability in soil, with potential positive implications for crop quality and environmental health improvements.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Ácidos Ftálicos/química , Poluentes do Solo/metabolismo , Triticum/fisiologia , Dibutilftalato/análise , Dibutilftalato/metabolismo , Dietilexilftalato/metabolismo , Grão Comestível/química , Poluição Ambiental , Ésteres/análise , Humanos , Ferro/análise , Óxidos/análise , Plastificantes/análise , Solo/química , Poluentes do Solo/análise , Triticum/metabolismo
15.
Plant Physiol Biochem ; 154: 287-294, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585429

RESUMO

The application of graphene oxide (GO) in the environment can have a positive or negative effect on the toxicity of pollutants, but the effect of GO on cadmium (Cd2+)-stressed lettuce has not yet been thoroughly studied. Therefore, we assessed the potential effects of foliar GO sprays on photosynthesis and antioxidant systems in Cd-stressed lettuce. We found that the foliar application of 30 mg L-1 of GO could significantly reduce signs of Cd2+ toxicity in lettuce. We observed increased net photosynthetic rates, stomatal conductance, transpiration rates, chlorophyll content, primary maximum photochemical efficiency of photosystem II, actual quantum yield, photosynthetic electron transport rates, ribulose-1,5-bisphosphate carboxylase and oxygenase concentrations, and biomass in Cd2+-stressed lettuce treated with GO. In addition, the foliar application of 30 mg L-1 of GO reduced the accumulation of the reactive oxygen species O·Ì„2 and H2O2, malondialdehyde content, and the activity of antioxidant enzymes. The decreased antioxidant enzyme activity could have been due to the decrease in reactive oxygen species. Cd2+ pollution is highly destructive to agricultural products, and the foliar application of GO provides a new potential tactic to improve the tolerance of plants to heavy metals.


Assuntos
Cádmio/toxicidade , Grafite/farmacologia , Lactuca/efeitos dos fármacos , Estresse Oxidativo , Fotossíntese , Antioxidantes , Clorofila , Peróxido de Hidrogênio , Lactuca/fisiologia , Folhas de Planta , Espécies Reativas de Oxigênio
16.
Environ Pollut ; 265(Pt B): 114800, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32474356

RESUMO

The pollution of farm soils by the plasticizer dibutyl phthalate (DBP) should be researched owing to the extensive use of plastic film. We investigated the influence of DBP on microbial communities and enzyme activities in rhizosphere and non-rhizosphere soil during the different growth stages of wheat and determined the response through simulations. The results indicated that protease, polyphenol oxidase, and ß-glucosidase activity in soil decreased with increasing DBP dosage, while dehydrogenase, urease, and acid phosphatase activities increased. Moreover, the effects of DBP on soil enzyme activity gradually weakened with DBP degradation. Dibutyl phthalate has a certain inhibitory effect on the activity, diversity, and heterogeneity of microorganisms in soil. In addition, DBP can increase the utilization of amines and carboxylic acids and decrease the utilization of carbohydrates and amino acids by soil microorganisms. According to the Gaussian and molecular docking analysis, we considered that monobutyl phthalate and DBP could affect the utilization of amino acids by Proteobacteria. The enzyme activity, microbial activity, and heterogeneity of rhizosphere soil were higher than those of non-rhizosphere soil. Microbial carbon source utilization in rhizosphere and non-rhizosphere soils depends on wheat growth, soil type, and DBP dosage. Owing to the widespread presence of DBP in agriculture, negative effects of phthalic acid esters should be considered in relation to soil quality and food safety in future.


Assuntos
Dibutilftalato , Poluentes do Solo/análise , Simulação de Acoplamento Molecular , Rizosfera , Solo , Microbiologia do Solo , Triticum
17.
J Hazard Mater ; 398: 122859, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32480324

RESUMO

Although graphene oxide (GO) has been widely used to enhance soil quality and crop yield, there is currently little information regarding the effects of foliar application of GO on cadmium (Cd) toxicity to plants. In this study, we investigated the response to GO in lettuce cultivated under Cd stress in hydroponic conditions. Lettuce was grown from seeds in a nutrient solution supplemented with 2 mg/L Cd and the leaves were sprayed with 0, 30, and 60 mg/L GO. The results indicated that application of 30 mg/L GO significantly increased the total length, surface area, average diameter, and hair number of lettuce roots, and effectively alleviated the negative effects of Cd on root growth. Furthermore, foliar application of 30 mg/L GO, but not 60 mg/L GO, significantly improved the quality of lettuce, including reduction in Cd accumulation in leaves and roots and increase in soluble sugar, protein, and vitamin C content. Transmission electron microscopy revealed that GO nanoparticles, which entered the leaves and were subsequently transported to the roots via the vascular system (phloem), reduced the damaging effect of Cd on cellular organelles, including the cell wall and membrane, chloroplasts, and starch granules. The effect may be attributed to the absorption of GO by lettuce cells, where it fixed Cd2+, thus reducing Cd2+ bioavailability, or to the improvement of Cd tolerance through regulation of lettuce metabolic pathways. Gaussian simulation analysis revealed that Cd caused significant changes in the GO molecule, resulting in detachment of an epoxy group from the GO carbon ring and breakage of OH bonds in hydroxyl groups, whereupon the oxygen freed from the OH bond formed a new bond with Cd. Collectively, these results indicate that foliar application of 30 mg/L GO can enhance the tolerance of lettuce to Cd, promote plant growth, and improve nutritional quality.


Assuntos
Grafite , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Grafite/toxicidade , Lactuca , Folhas de Planta/química , Raízes de Plantas/química , Poluentes do Solo/toxicidade
18.
Chemosphere ; 255: 126995, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416394

RESUMO

In this paper, we present the preparation of MoS2-modified magnetic biochar (MoS2@MBC) as a novel adsorbent by a simple hydrothermal method. MoS2@MBC contains abundant S-containing functional groups that facilitate efficient Cd(II) removal from aqueous systems. We employed various characterization techniques to explore the morphology, surface area, and chemical composition of MoS2@MBC; these included Brunauer-Emmett-Teller analysis scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction,. The results indicated the successful decoration of the surface of MoS2@MBC with iron and MoS2, and a higher surface area of MoS2@MBC than that of unmodified biochar. Moreover, adsorption properties including thermodynamics and kinetics were investigated along with the effects of pH, humic acid, and ionic strength on the Cd(II) adsorption onto MoS2@MBC. The O-, C-, S-, and Fe-containing functional groups on the surface of MoS2@MBC led to an electrostatic attraction of Cd(II) and strong Cd-S complexation. The Langmuir and pseudo second-order models fitted best for the batch adsorption experiments results. The adsorption capacity of MoS2@MBC (139 mg g-1 on the basis of the Langmuir model) was 7.81 times higher than that of pristine biochar. The adsorption process was found to be pH-dependent. The experimental results indicated that MoS2@MBC is an effective adsorbent for removing Cd(II) from water solutions. Further, the adsorption process involved the complexation of Cd(II) with oxygen-based functional groups, ion exchange, electrostatic attraction, Cd(II)-π interactions, metal-sulfur complexation, and inner-surface complexation. This work provides new insights into the Cd(II) ions removal from water via adsorption. It also demonstrates that MoS2@MBC is an efficient and economic adsorbent to treat Cd(II)-contaminated water.


Assuntos
Adsorção , Cádmio/isolamento & purificação , Carvão Vegetal/química , Dissulfetos/química , Molibdênio/química , Purificação da Água/métodos , Cádmio/química , Cinética , Concentração Osmolar , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
19.
Chemosphere ; 246: 125701, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31891847

RESUMO

There is a demand to develop techniques for the continuous removal/immobilization of heavy metals from contaminated soil and water bodies. In this study, a unique biochar preparation method was developed for the removal of cadmium. First, conventional biochars of corn straw were produced by pyrolysis at two temperatures and then treated using one-step synthesis at different ferric nitrate ratios and different calcination temperatures to produce magnetic biochars. Second, the prepared biochars were used as adsorbents for Cd(II) removal from a solution, and the best one was selected for further evaluation. Various techniques were used to characterize the adsorbents and determine the main adsorption mechanism. The results indicated that the biochars successfully carried iron particles within, which improved the specific surface area, formed inner-sphere complexes with oxygen-containing groups, and increased the number of oxygen-containing groups. The adsorption experiments revealed that MBC800-0.6300 had a higher affinity for Cd(II) than the other adsorbents. Batch adsorption experiments were performed to explore the influence of the kinetics, isotherm, pH, thermodynamics, ionic strength, and humic acid on Cd(II) adsorption. The results indicated that the Langmuir model fit the Cd(II) adsorption best with MBC800-0.6300 having the highest adsorption capacity (46.90 mg g-1). The sorption kinetics of Cd(II) on the adsorbent follows a pseudo-second-order kinetics model. Because MBC800-0.6300 is loaded with metal ions, it can be conveniently collected by a magnet. Thus, biochar modification methods with ferric nitrate impregnation provide an excellent approach to eliminating Cd(II) from aqueous solutions. The possible adsorption mechanisms include chemisorption, electrostatic interaction, and monolayer adsorption.


Assuntos
Cádmio/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Adsorção , Cádmio/análise , Compostos Férricos , Ferro , Cinética , Nitratos , Concentração Osmolar , Temperatura , Termodinâmica , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
20.
Chemosphere ; 233: 9-16, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31163310

RESUMO

The effects of cadmium (Cd) on wheat seedlings in the presence of graphene oxide (GO) were investigated. Parameters evaluated include root morphology, microtubule protein content, cytochrome P450 activity, and the microcellular structure of wheat seedlings. Compared with treatments with Cd or GO in isolation, treatments combining GO and Cd inhibited the total root length, total root surface area, average root diameter, and number of root hairs. GO combined with Cd also increased cytochrome P450 activity and reduced tubulin content. Cotransport of GO-loading Cd entered root tissues and was then transported to the mesophyll cells; this, in turn, triggered damage to cellular structures, including the cell membranes and chloroplast, leading to root blockage and reduced respiratory efficiency, decreased effectiveness of water and nutrient absorption, and ultimate inhibition of wheat growth and development. These effects of GO exposure were also concentration-dependent. The results indicated that GO amplified the phytotoxicity of Cd in wheat seedling roots. Given the worldwide exposure of the environment to Cd contamination, careful consideration should be given to the effects of GO in combination with Cd in agricultural management.


Assuntos
Cádmio/toxicidade , Grafite/química , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Cádmio/química , Compostos de Cádmio , Óxidos/química , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Poluentes do Solo/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA