Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Anal Health Toxicol ; 39(2): e2024012-0, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39054826

RESUMO

Benzene is a carcinogenic pollutant with significant emission sources present in the atmosphere. The need for accurate and precise measurement of benzene in the atmosphere has become increasingly evident due to its toxicity and the adverse health effects associated with exposure to different concentrations. Certified reference material (CRM) is essential to establish the traceability of measurement results. The present review compiles the available national and international measurement methods, certified reference materials (CRMs) for benzene and the limit of benzene in fuel composition (v/v) worldwide. Overall, the review indicates the benzene level in the atmosphere and the resulting impacts on the environment and human health, which frequently exceed the exposure limits of different environment regulatory agencies. An extensive literature review was conducted to gather information on monitoring and analysis methods for benzene, revealing that the most preferred method, i.e. Gas Chromatography- Flame Ionization Detector and Mass Spectrometry, is neither cost-effective nor suitable for real-time continuous monitoring. By analysing existing literature and studies, this review will shed light on the understanding of the importance of benzene pollution monitoring in ambient air and its implications for public health. Additionally, it will reflect the mitigation strategies applied by regulators & need for future revisions of air quality guidelines.

2.
Environ Anal Health Toxicol ; 38(3): e2023016-0, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37853697

RESUMO

Benzene is the most toxic and hazardous pollutant among volatile organic compounds (VOCs), as it comes under group 1 carcinogens recognized by the International Agency for Research on Cancer (IARC). It also plays a significant role in forming secondary pollutants like ozone. The benzene concentration was measured using a charcoal sorbent tube by active sampling at a traffic junction and analysis was done using GC-FID. The maximum average concentration of benzene in ambient air was found to be 33 µg/m3. A diurnal study of benzene measurement shows higher benzene concentrations in the evening compared to the morning. Seasonal variation of benzene is found to be winter > spring > summer > autumn > monsoon and OFP was found to be 21, 19, 14, 13, and 10 respectively. Cancer (ILCR) and non-cancer (HQ) health risk assessment was done to determine the impact of ambient benzene on the residents of urban areas. The yearly average value of ILCR was found to be 2×10-6 ± 1×10-6 which ranges from acceptable value to three times the WHO acceptable value i.e 1×10-6. The correlation of ozone and its precursor, benzene with meteorological parameters is also evaluated. The correlation of benzene and ozone with solar radiation shows the influence of photochemical reactions on the levels of benzene and ozone at the study site, although it is low.

3.
Sci Total Environ ; 892: 164266, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37225098

RESUMO

Considering the significance of PM1 aerosol in assessing health impacts of air pollution, an extensive analysis of PM1 samples collected at an urban site in Delhi is presented in this study. Overall, PM1 contributed to about 50 % of PM2.5 mass which is alarming especially in Delhi where particle mass loadings are usually higher than prescribed limits. Major portion of PM1 consisted of organic matter (OM) that formed nearly 47 % of PM1 mass. Elemental carbon (EC) contributed to about 13 % of PM1 mass, whereas SO42- (16 %), NH4+ (10 %), NO3- (4 %) and Cl- (3 %) were the major inorganic ions present. Sampling was performed in two distinctive campaign periods (in terms of meteorological conditions and heating (fire) activities), during the year 2019, each spanning two-week time, i.e. (i) September 3rd-16th (clean days), and (ii) November 22nd-December 5th (polluted days). Additionally, PM2.5 and black carbon (BC) were measured simultaneously for subsequent analysis. The 24-h averaged mean concentrations of PM2.5 and BC during clean days (polluted days) were 70.6 ± 26.9 and 3.9 ± 1.0 µg m-3 (196 ± 104 and 7.6 ± 4.1 µg m-3), respectively, which were systematically lower (higher) than that of the annual mean (taken from studies conducted at same site in 2019) of 142 and 5.7 µg m-3, respectively. Changes in characteristic ratios (i.e., organic carbon (OC)/elemental carbon (EC) and K+/EC) of chemical species detected in PM1 show an increase in biomass emissions during polluted days. Increase in biomass emission can be attributed to increase in heating practices (burning of biofuels such as wood logs, straw, and cow-dung cake) in- and around- Delhi because of fall in temperature during second campaign. Furthermore, a significant increase in NO3- fraction of PM1 is observed during second campaign which shows fog processing of NOX due to conducive meteorological conditions in winters. Also, comparatively stronger correlation of NO3- with K+ during second campaign (r = 0.98 as compared to r = 0.5 during first campaign) suggests the increased heating practices to be a contributing factor for increased fraction of NO3- in PM1. We observed that during polluted days, meteorological parameters such as dispersion rate also played a major role in intensifying the impact of increased local emissions due to heating activities. Apart from this, change in the direction of regional emission transport to study site and the topology of Delhi are the possible reasons for the elevated pollution level, especially PM1 during winter in Delhi. This study also suggests that black carbon measurement techniques used in current study (optical absorbance with heated inlet and evolved carbon techniques) can be used as reference techniques to determine the site-specific calibration constant of optical photometers for urban aerosol.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Estações do Ano , Aerossóis/análise , Carbono/análise , Fuligem/análise , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA