Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 30(6): 848-862.e7, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483363

RESUMO

Dietary fibers act through the microbiome to improve cardiovascular health and prevent metabolic disorders and cancer. To understand the health benefits of dietary fiber supplementation, we investigated two popular purified fibers, arabinoxylan (AX) and long-chain inulin (LCI), and a mixture of five fibers. We present multiomic signatures of metabolomics, lipidomics, proteomics, metagenomics, a cytokine panel, and clinical measurements on healthy and insulin-resistant participants. Each fiber is associated with fiber-dependent biochemical and microbial responses. AX consumption associates with a significant reduction in LDL and an increase in bile acids, contributing to its observed cholesterol reduction. LCI is associated with an increase in Bifidobacterium. However, at the highest LCI dose, there is increased inflammation and elevation in the liver enzyme alanine aminotransferase. This study yields insights into the effects of fiber supplementation and the mechanisms behind fiber-induced cholesterol reduction, and it shows effects of individual, purified fibers on the microbiome.


Assuntos
Fibras na Dieta , Inulina , Bifidobacterium , Ácidos e Sais Biliares , Colesterol , Fibras na Dieta/metabolismo , Humanos , Inulina/metabolismo
2.
Nature ; 595(7867): 415-420, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262212

RESUMO

Gut microorganisms modulate host phenotypes and are associated with numerous health effects in humans, ranging from host responses to cancer immunotherapy to metabolic disease and obesity. However, difficulty in accurate and high-throughput functional analysis of human gut microorganisms has hindered efforts to define mechanistic connections between individual microbial strains and host phenotypes. One key way in which the gut microbiome influences host physiology is through the production of small molecules1-3, yet progress in elucidating this chemical interplay has been hindered by limited tools calibrated to detect the products of anaerobic biochemistry in the gut. Here we construct a microbiome-focused, integrated mass-spectrometry pipeline to accelerate the identification of microbiota-dependent metabolites in diverse sample types. We report the metabolic profiles of 178 gut microorganism strains using our library of 833 metabolites. Using this metabolomics resource, we establish deviations in the relationships between phylogeny and metabolism, use machine learning to discover a previously undescribed type of metabolism in Bacteroides, and reveal candidate biochemical pathways using comparative genomics. Microbiota-dependent metabolites can be detected in diverse biological fluids from gnotobiotic and conventionally colonized mice and traced back to the corresponding metabolomic profiles of cultured bacteria. Collectively, our microbiome-focused metabolomics pipeline and interactive metabolomics profile explorer are a powerful tool for characterizing microorganisms and interactions between microorganisms and their host.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metabolômica/métodos , Animais , Bactérias/classificação , Bactérias/genética , Bacteroides/genética , Bacteroides/metabolismo , Genes Bacterianos/genética , Genômica , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Camundongos , Nitrogênio/metabolismo , Fenótipo , Filogenia
3.
Cell ; 183(3): 589-591, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125887

RESUMO

Ha and colleagues describe a previously unappreciated diversity of microbes in the mesenteric adipose tissue (MAT) surrounding the GI tract. Viable bacteria that are mislocalized from the gut microbiota and metabolically adapted to the MAT contribute to the "creeping fat" of Crohn's disease.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Adaptação Fisiológica , Tecido Adiposo , Humanos , Mesentério
4.
Proc Natl Acad Sci U S A ; 117(44): 27509-27515, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077598

RESUMO

Immune checkpoint-blocking antibodies that attenuate immune tolerance have been used to effectively treat cancer, but they can also trigger severe immune-related adverse events. Previously, we found that Bifidobacterium could mitigate intestinal immunopathology in the context of CTLA-4 blockade in mice. Here we examined the mechanism underlying this process. We found that Bifidobacterium altered the composition of the gut microbiota systematically in a regulatory T cell (Treg)-dependent manner. Moreover, this altered commensal community enhanced both the mitochondrial fitness and the IL-10-mediated suppressive functions of intestinal Tregs, contributing to the amelioration of colitis during immune checkpoint blockade.


Assuntos
Doenças Autoimunes/prevenção & controle , Bifidobacterium/imunologia , Microbioma Gastrointestinal/imunologia , Probióticos/administração & dosagem , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Tolerância Imunológica , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo
5.
Cell Host Microbe ; 27(4): 659-670.e5, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32101703

RESUMO

Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bolsas Cólicas/microbiologia , Disbiose/complicações , Fezes/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Polipose Adenomatosa do Colo/microbiologia , Animais , Ácidos e Sais Biliares/farmacologia , Colite/etiologia , Colite/microbiologia , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Metagenoma , Camundongos , Microbiota , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Ruminococcus/isolamento & purificação , Transcriptoma
6.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084341

RESUMO

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Carboidratos da Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiologia , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Óperon , Simbiose
7.
Gut Microbes ; 10(2): 216-227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30118385

RESUMO

The study of traditional populations provides a view of human-associated microbes unperturbed by industrialization, as well as a window into the microbiota that co-evolved with humans. Here we discuss our recent work characterizing the microbiota from the Hadza hunter-gatherers of Tanzania. We found seasonal shifts in bacterial taxa, diversity, and carbohydrate utilization by the microbiota. When compared to the microbiota composition from other populations around the world, the Hadza microbiota shares bacterial families with other traditional societies that are rare or absent from microbiotas of industrialized nations. We present additional observations from the Hadza microbiota and their lifestyle and environment, including microbes detected on hands, water, and animal sources, how the microbiota varies with sex and age, and the short-term effects of introducing agricultural products into the diet. In the context of our previously published findings and of these additional observations, we discuss a path forward for future work.


Assuntos
Dieta/etnologia , Microbiologia Ambiental , Microbioma Gastrointestinal , Estilo de Vida/etnologia , Fatores Etários , Animais , Biodiversidade , Carboidratos da Dieta/metabolismo , Fezes/microbiologia , Feminino , Humanos , Masculino , Estações do Ano , Tanzânia/etnologia
8.
PLoS Biol ; 16(11): e2005396, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30439937

RESUMO

The composition of the gut microbiome in industrialized populations differs from those living traditional lifestyles. However, it has been difficult to separate the contributions of human genetic and geographic factors from lifestyle. Whether shifts away from the foraging lifestyle that characterize much of humanity's past influence the gut microbiome, and to what degree, remains unclear. Here, we characterize the stool bacterial composition of four Himalayan populations to investigate how the gut community changes in response to shifts in traditional human lifestyles. These groups led seminomadic hunting-gathering lifestyles until transitioning to varying levels of agricultural dependence upon farming. The Tharu began farming 250-300 years ago, the Raute and Raji transitioned 30-40 years ago, and the Chepang retain many aspects of a foraging lifestyle. We assess the contributions of dietary and environmental factors on their gut-associated microbes and find that differences in the lifestyles of Himalayan foragers and farmers are strongly correlated with microbial community variation. Furthermore, the gut microbiomes of all four traditional Himalayan populations are distinct from that of the Americans, indicating that industrialization may further exacerbate differences in the gut community. The Chepang foragers harbor an elevated abundance of taxa associated with foragers around the world. Conversely, the gut microbiomes of the populations that have transitioned to farming are more similar to those of Americans, with agricultural dependence and several associated lifestyle and environmental factors correlating with the extent of microbiome divergence from the foraging population. The gut microbiomes of Raute and Raji reveal an intermediate state between the Chepang and Tharu, indicating that divergence from a stereotypical foraging microbiome can occur within a single generation. Our results also show that environmental factors such as drinking water source and solid cooking fuel are significantly associated with the gut microbiome. Despite the pronounced differences in gut bacterial composition across populations, we found little differences in alpha diversity across lifestyles. These findings in genetically similar populations living in the same geographical region establish the key role of lifestyle in determining human gut microbiome composition and point to the next challenging steps of determining how large-scale gut microbiome reconfiguration impacts human biology.


Assuntos
Microbioma Gastrointestinal/genética , Estilo de Vida/etnologia , Microbiota/genética , Adulto , Bactérias/genética , Dieta , Dieta Paleolítica , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Genética Populacional/métodos , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , Nepal/etnologia , RNA Ribossômico 16S/genética , População Rural
9.
Sci Transl Med ; 7(306): 306ra148, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400909

RESUMO

Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.


Assuntos
Antibacterianos/uso terapêutico , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , Virulência/efeitos dos fármacos , Animais , Azóis/uso terapêutico , Isoindóis , Camundongos , Compostos Organosselênicos/uso terapêutico
11.
ISME J ; 8(11): 2193-206, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24781901

RESUMO

Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide moiety that acts as both an attachment site and carbon source for intestinal bacteria. Non-secretors, who are homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to Crohn's disease (CD). To characterize the effect of FUT2 polymorphism on the mucosal ecosystem, we profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage samples from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 sese). Imputed metagenomic analysis revealed perturbations of energy metabolism in the microbiome of non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and vitamin metabolism and glycan biosynthesis and metabolism-related pathways, and the depletion of amino-acid biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2(-/-) genotype. Metabolomic analysis of human specimens revealed concordant as well as novel changes in the levels of several metabolites. Human metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical levels of inflammation in the local intestinal mucosa. Therefore, the colonic microbiota of non-secretors is altered at both the compositional and functional levels, affecting the host mucosal state and potentially explaining the association of FUT2 genotype and CD susceptibility.


Assuntos
Doença de Crohn/genética , Fucosiltransferases/genética , Mucosa Intestinal/microbiologia , Microbiota , Polimorfismo Genético , Adulto , Idoso , Animais , Bactérias/metabolismo , Metabolismo Energético/genética , Feminino , Humanos , Masculino , Metaboloma , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteoma/metabolismo , Fatores de Risco , Galactosídeo 2-alfa-L-Fucosiltransferase
12.
Proc Natl Acad Sci U S A ; 103(23): 8834-9, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16735464

RESUMO

Bacteroides thetaiotaomicron is a prominent member of our normal adult intestinal microbial community and a useful model for studying the foundations of human-bacterial mutualism in our densely populated distal gut microbiota. A central question is how members of this microbiota sense nutrients and implement an appropriate metabolic response. B. thetaiotaomicron contains a large number of glycoside hydrolases not represented in our own proteome, plus a markedly expanded collection of hybrid two-component system (HTCS) proteins that incorporate all domains found in classical two-component environmental sensors into one polypeptide. To understand the role of HTCS in nutrient sensing, we used B. thetaiotaomicron GeneChips to characterize their expression in gnotobiotic mice consuming polysaccharide-rich or -deficient diets. One HTCS, BT3172, was selected for further analysis because it is induced in vivo by polysaccharides, and its absence reduces B. thetaiotaomicron fitness in polysaccharide-rich diet-fed mice. Functional genomic and biochemical analyses of WT and BT3172-deficient strains in vivo and in vitro disclosed that alpha-mannosides induce BT3172 expression, which in turn induces expression of secreted alpha-mannosidases. Yeast two-hybrid screens revealed that the cytoplasmic portion of BT3172's sensor domain serves as a scaffold for recruiting glucose-6-phosphate isomerase and dehydrogenase. These interactions are a unique feature of BT3172 and specific for the cytoplasmic face of its sensor domain. Loss of BT3172 reduces glycolytic pathway activity in vitro and in vivo. Thus, this HTCS functions as a metabolic reaction center, coupling nutrient sensing to dynamic regulation of monosaccharide metabolism. An expanded repertoire of HTCS proteins with diversified sensor domains may be one reason for B. thetaiotaomicron's success in our intestinal ecosystem.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Intestinos/microbiologia , Polissacarídeos/metabolismo , Simbiose , Animais , Bacteroides/metabolismo , Ceco/microbiologia , Citoplasma/metabolismo , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes , Humanos , Manose/metabolismo , Camundongos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Polissacarídeos Bacterianos/genética , Ligação Proteica , Estrutura Terciária de Proteína , alfa-Manosidase/metabolismo
13.
J Biol Chem ; 277(20): 17502-10, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-11884388

RESUMO

The glycosidic linkage of sialic acids is much more sensitive to acid hydrolysis than those of other monosaccharides in vertebrates. The commonest sialic acids in nature are neuraminic acid (Neu)-based and are typically N-acylated at the C5 position. Unsubstituted Neu is thought to occur on native gangliosides of certain tumors and cell lines, and synthetic de-N-acetyl-gangliosides have potent biological properties in vitro. However, claims for their natural existence are based upon monoclonal antibodies and pulse-chase experiments, and there have been no reports of their chemical detection. Here we report that one of these antibodies shows nonspecific cross-reactivity with a polypeptide epitope, further emphasizing the need for definitive chemical proof of unsubstituted Neu on naturally occurring gangliosides. While pursuing this, we found that alpha2-3-linked Neu on chemically de-N-acetylated G(M3) ganglioside resists acid hydrolysis under conditions where the N-acetylated form is completely labile. To ascertain the generality of this finding, we investigated the stability of glycosidically linked alpha- and beta-methyl glycosides of Neu. Using NMR spectroscopy to monitor glycosidic linkage hydrolysis, we find that only 47% of Neualpha2Me is hydrolyzed after 3 h in 10 mm HCl at 80 degrees C, whereas Neu5Acalpha2Me is 95% hydrolyzed after 20 min under the same conditions. Notably, Neubeta2Me is hydrolyzed even slower than Neualpha2Me, indicating that acid resistance is a general property of glycosidically linked Neu. Taking advantage of this, we modified classical purification techniques for de-N-acetyl-ganglioside isolation using acid to first eliminate conventional gangliosides. We also introduce a phospholipase-based approach to remove contaminating phospholipids that previously hindered efforts to study de-N-acetyl-gangliosides. The partially purified sample can then be N-propionylated, allowing acid release and mass spectrometric detection of any originally existing Neu as Neu5Pr. These advances allowed us to detect covalently bound Neu in lipid extracts of a human melanoma tumor, providing the first chemical proof for naturally occurring de-N-acetyl-gangliosides.


Assuntos
Gangliosídeos/metabolismo , Melanoma/metabolismo , Ácidos Neuramínicos/metabolismo , Acetilação , Animais , Anticorpos Monoclonais , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetinae , Reações Cruzadas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Gangliosídeo G(M3)/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Ácidos Neuramínicos/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA