Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Geroscience ; 45(5): 2983-3002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37642933

RESUMO

Whole brain irradiation (WBI), a commonly employed therapy for multiple brain metastases and as a prophylactic measure after cerebral metastasis resection, is associated with a progressive decline in neurocognitive function, significantly impacting the quality of life for approximately half of the surviving patients. Recent preclinical investigations have shed light on the multifaceted cerebrovascular injury mechanisms underlying this side effect of WBI. In this study, we aimed to test the hypothesis that WBI induces endothelial senescence, contributing to chronic disruption of the blood-brain barrier (BBB) and microvascular rarefaction. To accomplish this, we utilized transgenic p16-3MR mice, which enable the identification and selective elimination of senescent cells. These mice were subjected to a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks), and cranial windows were applied to both WBI-treated and control mice. Quantitative assessment of BBB permeability and capillary density was performed using two-photon microscopy at the 6-month post-irradiation time point. The presence of senescent microvascular endothelial cells was assessed by imaging flow cytometry, immunolabeling, and single-cell RNA-sequencing (scRNA-seq). WBI induced endothelial senescence, which associated with chronic BBB disruption and a trend for decreased microvascular density in the mouse cortex. In order to investigate the cause-and-effect relationship between WBI-induced senescence and microvascular injury, senescent cells were selectively removed from animals subjected to WBI treatment using Navitoclax/ABT263, a well-known senolytic drug. This intervention was carried out at the 3-month post-WBI time point. In WBI-treated mice, Navitoclax/ABT263 effectively eliminated senescent endothelial cells, which was associated with decreased BBB permeability and a trend for increased cortical capillarization. Our findings provide additional preclinical evidence that senolytic treatment approaches may be developed for prevention of the side effects of WBI.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Camundongos , Animais , Qualidade de Vida , Senoterapia , Encéfalo/irrigação sanguínea , Senescência Celular
2.
Geroscience ; 45(3): 1491-1510, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792820

RESUMO

Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 µm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Substância Branca , Camundongos , Masculino , Animais , Microcirculação , Substância Branca/diagnóstico por imagem , Microscopia , Circulação Cerebrovascular/fisiologia , Tomografia de Coerência Óptica , Qualidade de Vida , Irradiação Craniana , Camundongos Endogâmicos C57BL , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Oxigênio
3.
J Lipid Res ; 61(10): 1308-1319, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32669383

RESUMO

Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Cognição , Interleucina-6/metabolismo , Pregnanolona/biossíntese , Envelhecimento/metabolismo , Animais , Encéfalo/fisiologia , Masculino , Camundongos
4.
Geroscience ; 42(2): 409-428, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31960269

RESUMO

Whole brain irradiation (WBI, also known as whole brain radiation therapy or WBRT) is a mainstream therapy for patients with identifiable brain metastases and as a prophylaxis for microscopic malignancies. WBI accelerates brain aging, causing progressive cognitive dysfunction in ~ 50% of surviving patients, thus compromising quality of life. The mechanisms responsible for this WBI side effect remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that WBI induces astrocyte senescence, which contributes to impaired astrocytic neurovascular coupling (NVC) responses and the genesis of cognitive decline. To achieve this goal, we used transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells. We subjected these mice to a clinically relevant protocol of fractionated WBI (5 Gy twice weekly for 4 weeks). WBI-treated and control mice were tested for spatial memory performance (radial arm water maze), astrocyte-dependent NVC responses (whisker-stimulation-induced increases in cerebral blood flow, assessed by laser speckle contrast imaging), NVC-related gene expression, astrocytic release of eicosanoid gliotransmitters and the presence of senescent astrocytes (by flow cytometry, immunohistochemistry and gene expression profiling) at 6 months post-irradiation. WBI induced senescence in astrocytes, which associated with NVC dysfunction and impaired performance on cognitive tasks. To establish a causal relationship between WBI-induced senescence and NVC dysfunction, senescent cells were depleted from WBI-treated animals (at 3 months post-WBI) by genetic (ganciclovir treatment) or pharmacological (treatment with the BCL-2/BCL-xL inhibitor ABT263/Navitoclax, a known senolytic drug) means. In WBI-treated mice, both treatments effectively eliminated senescent astrocytes, rescued NVC responses, and improved cognitive performance. Our findings suggest that the use of senolytic drugs can be a promising strategy for preventing the cognitive impairment associated with WBI.


Assuntos
Astrócitos , Cognição , Acoplamento Neurovascular , Preparações Farmacêuticas , Animais , Encéfalo/efeitos da radiação , Senescência Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida , Lesões por Radiação
5.
Geroscience ; 41(5): 591-607, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31641924

RESUMO

Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1KO mice) have a significant reduction in lifespan, exhibit many phenotypes of accelerated aging, and have high levels of oxidative stress in various tissues. Age-associated cognitive decline is a hallmark of aging and the increase in oxidative stress/damage with age is one of the mechanisms proposed for cognitive decline with age. Therefore, the goal of this study was to determine if Sod1KO mice exhibit an accelerated loss in cognitive function similar to that observed in aged animals. Cognition was assessed in Sod1KO and wild type (WT) mice using an automated home-cage testing apparatus (Noldus PhenoTyper) that included an initial discrimination and reversal task. Comparison of the total distance moved by the mice during light and dark phases of the study demonstrated that the Sod1KO mice do not show a deficit in movement. Assessment of cognitive function showed no significant difference between Sod1KO and WT mice during the initial discrimination phase of learning. However, during the reversal task, Sod1KO mice showed a significantly greater number of incorrect entries compared to WT mice indicating a decline in cognition similar to that observed in aged animals. Markers of oxidative stress (4-Hydroxynonenal, 4-HNE) and neuroinflammation [proinflammatory cytokines (IL6 and IL-1ß) and neuroinflammatory markers (CD68, TLR4, and MCP1)] were significantly elevated in the hippocampus of male and female Sod1KO compared to WT mice. This study provides important evidence that increases in oxidative stress alone are sufficient to induce neuroinflammation and cognitive dysfunction that parallels the memory deficits seen in advanced aging and neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva/fisiopatologia , Estresse Oxidativo/fisiologia , Aldeídos/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos Knockout , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Geroscience ; 41(2): 185-208, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31076997

RESUMO

Disruptions in growth hormone/insulin-like growth factor-1 (GH/IGF-1) signaling have been linked to improved longevity in mice and humans. Nevertheless, while IGF-1 levels are associated with increased cancer risk, they have been paradoxically implicated with protection from other age-related conditions, particularly in the brain, suggesting that strategies aimed at selectively increasing central IGF-1 action may have favorable effects on aging. To test this hypothesis, we generated inducible, brain-specific (TRE-IGF-1 × Camk2a-tTA) IGF-1 (bIGF-1) overexpression mice and studied effects on healthspan. Doxycycline was removed from the diet at 12 weeks old to permit post-development brain IGF-1 overexpression, and animals were monitored up to 24 months. Brain IGF-1 levels were increased approximately twofold in bIGF-1 mice, along with greater brain weights, volume, and myelin density (P < 0.05). Age-related changes in rotarod performance, exercise capacity, depressive-like behavior, and hippocampal gliosis were all attenuated specifically in bIGF-1 male mice (P < 0.05). However, chronic brain IGF-1 failed to prevent declines in cognitive function or neurovascular coupling. Therefore, we performed a short-term intranasal (IN) treatment of either IGF-1 or saline in 24-month-old male C57BL/6 mice and found that IN IGF-1 treatment tended to reduce depressive (P = 0.09) and anxiety-like behavior (P = 0.08) and improve motor coordination (P = 0.07) and unlike transgenic mice improved motor learning (P < 0.05) and visuospatial and working memory (P < 0.05). These data highlight important sex differences in how brain IGF-1 action impacts healthspan and suggest that translational approaches that target IGF-1 centrally can restore cognitive function, a possibility that should be explored as a strategy to combat age-related cognitive decline.


Assuntos
Envelhecimento/genética , Disfunção Cognitiva/genética , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Transtornos Psicomotores/genética , Animais , Modelos Animais de Doenças , Feminino , Longevidade/genética , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória , Córtex Sensório-Motor , Transdução de Sinais
7.
Geroscience ; 41(2): 209-227, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31037472

RESUMO

There is significant overlap between the cellular and molecular mechanisms of aging and pathways contributing to carcinogenesis, including the role of genome maintenance pathways. In the field of geroscience analysis of novel genetic mouse models with either a shortened, or an extended, lifespan provides a unique opportunity to evaluate the synergistic roles of longevity assurance pathways in cancer resistance and regulation of lifespan and to develop novel targets for interventions that both delay aging and prevent carcinogenesis. There is a growing need for robust assays to assess the susceptibility of cancer in these models. The present review focuses on a well-characterized method frequently used in cancer research, which can be adapted to study resilience to genotoxic stress and susceptibility to genotoxic stress-induced carcinogenesis in geroscience research namely, chemical carcinogenesis induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). Recent progress in understanding how longer-living mice may achieve resistance to chemical carcinogenesis and how these pathways are modulated by anti-aging interventions is reviewed. Strain-specific differences in sensitivity to DMBA-induced carcinogenesis are also explored and contrasted with mouse lifespan. The clinical relevance of inhibition of DMBA-induced carcinogenesis for the pathogenesis of mammary adenocarcinomas in older human subjects is discussed. Finally, the potential role of insulin-like growth factor-1 (IGF-1) in the regulation of pathways responsible for cellular resilience to DMBA-induced mutagenesis is discussed.


Assuntos
9,10-Dimetil-1,2-benzantraceno/farmacologia , Envelhecimento/genética , Dano ao DNA , Neoplasias Mamárias Experimentais/induzido quimicamente , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Feminino , Geriatria , Humanos , Longevidade/genética , Masculino , Neoplasias Mamárias Experimentais/genética , Camundongos , Ratos Sprague-Dawley , Pesquisa , Roedores
8.
Geroscience ; 40(2): 123-137, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29687240

RESUMO

Cognitive function declines substantially with age in both humans and animal models. In humans, this decline is associated with decreases in independence and quality of life. Although the methodology for analysis of cognitive function in human models is relatively well established, similar analyses in animal models have many technical issues (e.g., unintended experimenter bias, motivational issues, stress, and testing during the light phase of the light dark cycle) that limit interpretation of the results. These caveats, and others, potentially bias the interpretation of studies in rodents and prevent the application of current tests of learning and memory as part of an overall healthspan assessment in rodent models of aging. The goal of this study was to establish the methodology to assess cognitive function in aging animals that addresses many of these concerns. Here, we use a food reward-based discrimination procedure with minimal stress in C57Bl/6J male mice at 6, 21, and 27 months of age, followed by a reversal task to assess behavioral flexibility. Importantly, the procedures minimize issues related to between-experimenter confounds and are conducted during both the dark and light phases of the light dark cycle in a home-cage setting. During cognitive testing, we were able to assess multiple measures of spontaneous movement and diurnal activity in young and aged mice including, distance moved, velocity, and acceleration over a 90-h period. Both initial discrimination and reversal learning significantly decreased with age and, similar to rats and humans, not all old mice demonstrated impairments in learning with age. These results permitted classification of animals based on their cognitive status. Analysis of movement parameters indicated decreases in distance moved as well as velocity and acceleration with increasing age. Based on these data, we developed preliminary models indicating, as in humans, a close relationship exists between age-related movement parameters and cognitive ability. Our results provide a reliable method for assessing cognitive performance with minimal stress and simultaneously provide key information on movement and diurnal activity. These methods represent a novel approach to developing non-invasive healthspan measures in rodent models that allow standardization across laboratories.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Cognição/fisiologia , Atividade Motora/fisiologia , Envelhecimento/psicologia , Animais , Intervalos de Confiança , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Razão de Chances , Reversão de Aprendizagem , Memória Espacial/fisiologia
9.
Aging Cell ; 17(2)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29405550

RESUMO

Moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling has an essential role in maintenance of healthy cognitive function. In advanced age, increased oxidative stress and cerebromicrovascular endothelial dysfunction impair neurovascular coupling, likely contributing to age-related decline of higher cortical functions. There is increasing evidence showing that mitochondrial oxidative stress plays a critical role in a range of age-related cellular impairments, but its role in neurovascular uncoupling remains unexplored. This study was designed to test the hypothesis that attenuation of mitochondrial oxidative stress may exert beneficial effects on neurovascular coupling responses in aging. To test this hypothesis, 24-month-old C57BL/6 mice were treated with a cell-permeable, mitochondria-targeted antioxidant peptide (SS-31; 10 mg kg-1  day-1 , i.p.) or vehicle for 2 weeks. Neurovascular coupling was assessed by measuring CBF responses (laser speckle contrast imaging) evoked by contralateral whisker stimulation. We found that neurovascular coupling responses were significantly impaired in aged mice. Treatment with SS-31 significantly improved neurovascular coupling responses by increasing NO-mediated cerebromicrovascular dilation, which was associated with significantly improved spatial working memory, motor skill learning, and gait coordination. These findings are paralleled by the protective effects of SS-31 on mitochondrial production of reactive oxygen species and mitochondrial respiration in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, mitochondrial oxidative stress contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline. We propose that mitochondria-targeted antioxidants may be considered for pharmacological microvascular protection for the prevention/treatment of age-related vascular cognitive impairment (VCI).


Assuntos
Antioxidantes/metabolismo , Disfunção Cognitiva/fisiopatologia , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Acoplamento Neurovascular/genética , Peptídeos/metabolismo , Envelhecimento , Animais , Masculino , Camundongos
10.
Int J Radiat Biol ; 93(11): 1257-1266, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28880721

RESUMO

PURPOSE: The present study was designed to investigate our hypothesis that NADPH oxidase plays a role in radiation-induced pro-oxidative and pro-inflammatory environments in the brain. MATERIALS AND METHODS: C57BL/6 mice received either fractionated whole brain irradiation or sham-irradiation. The mRNA expression levels of pro-inflammatory mediators, such as TNF-α and MCP-1, were determined by quantitative real-time RT-PCR. The protein expression levels of TNF-α, MCP-1, NOX-2 and Iba1 were detected by immunofluorescence staining. The levels of ROS were visualized by in situ DHE fluorescence staining. RESULTS: A significant up-regulation of mRNA and protein expression levels of TNF-α and MCP-1 was observed in irradiated mouse brains. Additionally, immunofluorescence staining of Iba1 showed a marked increase of microglial activation in mouse brain after irradiation. Moreover, in situ DHE fluorescence staining revealed that fractionated whole brain irradiation significantly increased production of ROS. Furthermore, a significant increase in immunoreactivity of NOX-2 was detected in mouse brain after irradiation. On the contrary, an enhanced ROS generation in mouse brain after irradiation was markedly attenuated in the presence of NOX inhibitors or NOX-2 neutralizing antibody. CONCLUSIONS: These results suggest that NOX-2 may play a role in fractionated whole brain irradiation-induced pro-oxidative and pro-inflammatory pathways in mouse brain.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Animais , Encéfalo/citologia , Encéfalo/enzimologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fracionamento da Dose de Radiação , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Inflamação/enzimologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos da radiação , NADPH Oxidase 2 , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos da radiação
11.
Geroscience ; 39(2): 129-145, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28409331

RESUMO

Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igf f/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.


Assuntos
Pleiotropia Genética , Nível de Saúde , Fator de Crescimento Insulin-Like I/fisiologia , Longevidade , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Vasc Surg ; 65(6): 1762-1768, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28259579

RESUMO

OBJECTIVE: The primary aim of the study was to assess whether both the amount and pace of daily walking were associated with circulating antioxidant capacity in symptomatic patients with peripheral artery disease (PAD). METHODS: Community-based walking was measured in 244 men and women who were limited by symptomatic PAD during a 1-week period in which they wore an ankle-mounted step activity monitor. Patients were further characterized by circulating antioxidant capacity with the OxiSelect (Cell Biolabs Inc, San Diego, Calif) hydroxyl radical antioxidant capacity (HORAC) activity assay. RESULTS: To assess the amount of walking, patients were grouped into low (≤2440 strides/d), middle (2441-3835 strides/d), and high (>3835 strides/d) stride tertiles. HORAC was higher in the middle (P = .03) and high (P = .01) stride tertiles than in the low tertile, but there was no difference between middle and high tertiles (P = .44). To assess the pace of walking, patients were grouped into slow (<25.0 strides/min), middle (25.0-31.6 strides/min), and fast (>31.6 strides/min) cadence tertiles. HORAC was higher in the high cadence tertile than in the low (P < .01) and middle (P < .01) tertiles, but there was no difference between low and middle tertiles (P = .48). Similar findings were obtained on group differences in HORAC after adjusting for age, sex, race, and ankle-brachial index for both the amount and pace of daily walking. CONCLUSIONS: Walking >2440 strides each day and walking at a cadence faster than 31.6 strides/min for 30 minutes each day are both associated with greater circulating antioxidant capacity in symptomatic patients with PAD. The clinical significance is that a home-based walking program may be one approach to increase endogenous antioxidant capacity.


Assuntos
Antioxidantes/metabolismo , Terapia por Exercício/métodos , Estresse Oxidativo , Doença Arterial Periférica/terapia , Caminhada , Actigrafia/instrumentação , Idoso , Índice Tornozelo-Braço , Apoptose , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Células Cultivadas , Serviços de Saúde Comunitária , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Teste de Esforço , Feminino , Monitores de Aptidão Física , Humanos , Radical Hidroxila/sangue , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Oklahoma , Doença Arterial Periférica/sangue , Doença Arterial Periférica/complicações , Doença Arterial Periférica/fisiopatologia , Estudos Prospectivos , Fatores de Tempo , Transfecção , Resultado do Tratamento
13.
Geroscience ; 39(2): 147-160, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233247

RESUMO

Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.


Assuntos
Reparo do DNA/fisiologia , Fibroblastos/patologia , Hormônio do Crescimento/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Neoplasias/etiologia , Animais , Longevidade , Masculino , Camundongos , Ratos Endogâmicos Lew
14.
J Biol Chem ; 291(46): 23895-23905, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655914

RESUMO

Protein tyrosine phosphatase MEG2 (PTP-MEG2) is a unique nonreceptor tyrosine phosphatase associated with transport vesicles, where it facilitates membrane trafficking by dephosphorylation of the N-ethylmaleimide-sensitive fusion factor. In this study, we identify the neurotrophin receptor TrkA as a novel cargo whose transport to the cell surface requires PTP-MEG2 activity. In addition, TrkA is also a novel substrate of PTP-MEG2, which dephosphorylates both Tyr-490 and Tyr-674/Tyr-675 of TrkA. As a result, overexpression of PTP-MEG2 down-regulates NGF/TrkA signaling and blocks neurite outgrowth and differentiation in PC12 cells and cortical neurons.


Assuntos
Neuritos/enzimologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais/fisiologia , Animais , Camundongos , Células PC12 , Transporte Proteico/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Ratos
15.
Age (Dordr) ; 38(4): 273-289, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27613724

RESUMO

Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f  + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.


Assuntos
Envelhecimento/metabolismo , Hipocampo/irrigação sanguínea , Hipertensão/complicações , Fator de Crescimento Insulin-Like I/deficiência , Rarefação Microvascular/patologia , Neocórtex/irrigação sanguínea , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Animais , Biomarcadores/sangue , Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/fisiopatologia , Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rarefação Microvascular/etiologia , RNA Mensageiro/metabolismo
16.
J Bone Miner Res ; 31(2): 443-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26260312

RESUMO

Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (µCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be reduced by modifying circulating IGF-1 levels early in life.


Assuntos
Envelhecimento/metabolismo , Densidade Óssea , Fator de Crescimento Insulin-Like I/metabolismo , Caracteres Sexuais , Transdução de Sinais , Coluna Vertebral/metabolismo , Envelhecimento/genética , Animais , Feminino , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Transgênicos , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/biossíntese , Ligante RANK/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Tempo
17.
Am J Physiol Heart Circ Physiol ; 309(11): H1837-45, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453330

RESUMO

Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia.


Assuntos
Astrócitos/enzimologia , Comunicação Celular , Células Endoteliais/enzimologia , Hiperemia/enzimologia , Microcirculação , Acoplamento Neurovascular , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Córtex Somatossensorial/enzimologia , Animais , Comunicação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hemodinâmica , Homeostase , Hiperemia/genética , Hiperemia/fisiopatologia , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/efeitos dos fármacos , Acoplamento Neurovascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Vibrissas/inervação
18.
J Gerontol A Biol Sci Med Sci ; 70(6): 665-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25136000

RESUMO

Aging impairs angiogenic capacity of cerebromicrovascular endothelial cells (CMVECs) promoting microvascular rarefaction, but the underlying mechanisms remain elusive. PACAP is an evolutionarily conserved neuropeptide secreted by endothelial cells and neurons, which confers important antiaging effects. To test the hypothesis that age-related changes in autocrine PACAP signaling contributes to dysregulation of endothelial angiogenic capacity, primary CMVECs were isolated from 3-month-old (young) and 24-month-old (aged) Fischer 344 x Brown Norway rats. In aged CMVECs, expression of PACAP was decreased, which was associated with impaired capacity to form capillary-like structures, impaired adhesiveness to collagen (assessed using electric cell-substrate impedance sensing [ECIS] technology), and increased apoptosis (caspase3 activity) when compared with young cells. Overexpression of PACAP in aged CMVECs resulted in increased formation of capillary-like structures, whereas it did not affect cell adhesion. Treatment with recombinant PACAP also significantly increased endothelial tube formation and inhibited apoptosis in aged CMVECs. In young CMVECs shRNA knockdown of autocrine PACAP expression significantly impaired tube formation capacity, mimicking the aging phenotype. Cellular and mitochondrial reactive oxygen species production (dihydroethidium and MitoSox fluorescence, respectively) were increased in aged CMVECs and were unaffected by PACAP. Collectively, PACAP exerts proangiogenic effects and age-related dysregulation of autocrine PACAP signaling may contribute to impaired angiogenic capacity of CMVECs in aging.


Assuntos
Envelhecimento/fisiologia , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Regulação para Baixo , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
J Vasc Surg ; 61(5): 1249-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24703977

RESUMO

BACKGROUND: We compared (1) cellular reactive oxygen species (ROS) production, inflammation, and apoptosis of cultured endothelial cells treated with sera and (2) circulating inflammatory measures, antioxidant capacity, vascular biomarkers, and calf muscle hemoglobin oxygen saturation (StO2) in men and women with peripheral artery disease (PAD). A secondary aim was to compare exercise performance and daily ambulatory activity between men and women. We hypothesized that women would have more impaired endothelial cellular ROS, inflammation, and apoptosis than men as well as worse systemic inflammation, antioxidant capacity, vascular biomarkers, calf muscle StO2, exercise performance, and daily ambulatory activity. METHODS: The 148 symptomatic men and women with PAD were characterized on the endothelial effects of circulating factors present in the sera by a cell culture-based bioassay on primary human arterial endothelial cells. Patients were further evaluated by circulating inflammatory and vascular biomarkers, physical examination and medical history, exercise performance, and calf muscle StO2 during exercise, and ambulatory activity was monitored during 1 week. RESULTS: Cellular ROS production was higher in African American women than in men (P = .021), but there was no gender difference in white individuals (P = .537). Men and women were not significantly different on endothelial cell apoptosis (P = .833) and nuclear factor κB activity (P = .465). For circulating factors, additional gender differences were found when comparisons were made within each race. In African Americans, women had higher intercellular adhesion molecule 1 (P = .022) and leptin (P < .001); whereas in white individuals, women had higher matrix metallopeptidase 9 (P = .047), higher vascular cell adhesion molecule 1 (P = .047), and lower hepatocyte growth factor (P = .046). Overall, women had higher apolipoprotein CIII (P = .035), lower pain-free distance (P = .048) and total distance (P < .001) during the 6-minute walk test, shorter time for calf muscle StO2 to reach the minimum value during exercise (P = .027), and slower average cadence (P = .004) during daily ambulation. CONCLUSIONS: African American women with symptomatic PAD have a heightened oxidative status, likely resulting in increased endothelial oxidative stress, compared with men. Furthermore, women exhibit a more pronounced proinflammatory profile of circulating biomarkers as well as more limited peripheral microcirculation, exercise performance, and ambulatory activity than men do. The clinical significance is that women with symptomatic PAD are in greater need than men of clinical intervention to improve oxidative stress, inflammation, and microcirculation, which may in turn have a favorable impact on their lower exercise performance and daily activity.


Assuntos
Negro ou Afro-Americano , Endotélio Vascular/fisiopatologia , Mediadores da Inflamação/sangue , Estresse Oxidativo/fisiologia , Doença Arterial Periférica/etnologia , Doença Arterial Periférica/fisiopatologia , População Branca , Atividades Cotidianas/classificação , Idoso , Apoptose/fisiologia , Teste de Esforço , Feminino , Hemoglobinometria , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Espécies Reativas de Oxigênio/sangue , Fatores de Risco , Fatores Sexuais
20.
J Gerontol A Biol Sci Med Sci ; 70(3): 303-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24642904

RESUMO

Resveratrol (3,4',5-trihydroxystilbene) is a plant-derived polyphenolic trans-stilbenoid, which exerts multifaceted antiaging effects. Here, we propose a novel delivery system for resveratrol, which significantly increases its cellular uptake into aged cells. Combination of resveratrol with a positively charged lipid component to "conventional" liposomes converts these lipid vesicles to a robust fusogenic system. To study their cellular uptake and cellular effects, we treated primary cerebromicrovascular endothelial cells isolated from aged F344xBN rats with resveratrol encapsulated in fusogenic liposomes (FL-RSV). To demonstrate effective cellular uptake of FL-RSV, accumulation of the lipophilic tracer dye, DiR, and resveratrol in cerebromicrovascular endothelial cells was confirmed using flow cytometry and confocal microscopy and high-performance liquid chromatography electrochemical detection. Treatment of aged cerebromicrovascular endothelial cells with FL-RSV activated Nrf2 (assessed with a reporter gene assay), significantly decreased cellular production of reactive oxygen species (assessed by a flow cytometry-based H2DCFDA fluorescence method), and inhibited apoptosis. Taken together, encapsulation of resveratrol into novel fusogenic liposomes significantly enhances the delivery of resveratrol into aged cells, which subsequently results in rapid activation of cellular Nrf2-driven antioxidant defense mechanisms. Our studies provide proof-of-concept for the development of a novel, translationally relevant interventional strategy for prevention and/or control of oxidative stress-related pathophysiological conditions in aging.


Assuntos
Antioxidantes/farmacologia , Encéfalo/patologia , Células Endoteliais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Técnicas de Cultura de Células , Senescência Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipossomos , Masculino , Veículos Farmacêuticos , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA