Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 365: 491-506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030083

RESUMO

Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.


Assuntos
Nanopartículas , Polietilenoglicóis , Camundongos , Animais , Polietilenoglicóis/química , Distribuição Tecidual , Polímeros/química , Poliésteres/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
2.
J Pharm Sci ; 112(3): 844-858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372229

RESUMO

The recent emergence of drug-dendrimer conjugates within pharmaceutical industry research and development introduces a range of challenges for analytical and measurement science. These molecules are very high molecular weight (100-200kDa) with a significant degree of structural complexity. The characteristics and quality attributes that require understanding and definition, and impact efficacy and safety, are diverse. They relate to the intact conjugate, the various building blocks of these complex systems and the level of the free and bound active pharmaceutical ingredient (API). From an analytical and measurement science perspective, this necessitates the measurement of the molecular weight, impurity characterisation, the quantitation of the number of conjugated versus free API molecules, the determination of the impurity profiles of the building blocks, primary structure and both particle size and morphology. Here we report the first example of a global characterisation of a drug-dendrimer conjugate - PEGylated poly-lysine dendrimer currently under development (AZD0466). The impact of the wide variety of analytical and measurement techniques on the overall understanding of this complex molecular entity is discussed, with the relative capabilities of the various approaches compared. The results of this study are an essential platform for the research and development of the future generations of related dendrimer-based medicines.


Assuntos
Antineoplásicos , Dendrímeros , Dendrímeros/química , Lisina , Antineoplásicos/química , Polietilenoglicóis/química
3.
Mol Pharm ; 19(1): 172-187, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890209

RESUMO

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action. Model simulations further enabled the identification of critical parameters that influence API exposure in tumors and downstream efficacy outcomes upon nanoparticle administration. The model was utilized to explore a range of dosing schedules and their effect on tumor growth kinetics, demonstrating the improved antitumor activity of nanoparticles with less frequent dosing compared to the same dose of naked APIs in conventional formulations.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/farmacocinética , Nanopartículas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Distribuição Tecidual , Resultado do Tratamento
4.
Commun Biol ; 4(1): 1241, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725463

RESUMO

Next generation modified antisense oligonucleotides (ASOs) are commercially approved new therapeutic modalities, yet poor productive uptake and endosomal entrapment in tumour cells limit their broad application. Here we compare intracellular traffic of anti KRAS antisense oligonucleotide (AZD4785) in tumour cell lines PC9 and LK2, with good and poor productive uptake, respectively. We find that the majority of AZD4785 is rapidly delivered to CD63+late endosomes (LE) in both cell lines. Importantly, lysobisphosphatidic acid (LBPA) that triggers ASO LE escape is presented in CD63+LE in PC9 but not in LK2 cells. Moreover, both cell lines recycle AZD4785 in extracellular vesicles (EVs); however, AZD4785 quantification by advanced mass spectrometry and proteomic analysis reveals that LK2 recycles more AZD4785 and RNA-binding proteins. Finally, stimulating LBPA intracellular production or blocking EV recycling enhances AZD4785 activity in LK2 but not in PC9 cells thus offering a possible strategy to enhance ASO potency in tumour cells with poor productive uptake of ASOs.


Assuntos
Antineoplásicos/farmacologia , Vesículas Extracelulares/fisiologia , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Linhagem Celular Tumoral , Humanos
5.
Int J Pharm ; 604: 120719, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015379

RESUMO

The human peptide hormone Oxyntomodulin (Oxm) is known to induce satiety, increase energy expenditure, and control blood glucose in humans, making it a promising candidate for treatment of obesity and/or type 2 diabetes mellitus. However, a pharmaceutical exploitation has thus far been impeded by fast in vivo clearance and the molecule's sensitivity to half-life extending structural modifications. We recently showed that Oxm self-assembles into amyloid-like nanofibrils that continuously release active, soluble Oxm in a peptide-deprived environment. S.c. injected Oxm nanofibrils extended plasma exposure from a few hours to five days in rodents, compared to s.c. applied soluble Oxm. Here we show that Oxm fibril elongation kinetics and thermodynamics display a uniquely low temperature optimum compared to previously reported amyloid-like peptide and protein assemblies. Elongation rate is optimal at room temperature, with association rates 2-3 times higher at 25 °C than at ≥37 °C or ≤20 °C. We deduce from a combination of Cryo electron microscopy and spectroscopic methods that Oxm fibrils have a double-layered, triangular cross-section composed of arch-shaped monomers. We suggest a thermodynamic model that links the necessary molecular rearrangements during fibrillation and peptide release to the unique temperature effects in Oxm self-assembly and disassembly.


Assuntos
Diabetes Mellitus Tipo 2 , Preparações Farmacêuticas , Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Peptídeos Semelhantes ao Glucagon , Humanos , Receptores de Glucagon
6.
Bioconjug Chem ; 31(1): 123-129, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794200

RESUMO

Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceutical products for oncology, with the cytotoxic pyrrolobenzodiazepine (PBD) family of "warheads" well-established in the clinic. While PBDs offer high potency, they are also characterized by their hydrophobicity, which can make formulation of the ADC challenging. Several approaches have been investigated to improve the physicochemical properties of PBD-containing ADCs, and herein a supramolecular approach was explored using cucurbit[8]uril (CB[8]). The ability of CB[8] to simultaneously encapsulate two guests was exploited to incorporate a 12-mer polyethylene glycol harboring a methyl viologen moiety at one terminus (MV-PEG12), together with a PBD harboring an indole moiety at the C2' position (SG3811). This formulation approach successfully introduced a hydrophilic PEG to mask the hydrophobicity of SG3811, improving the physical stability of the ADC while avoiding any loss of potency related to chemical modification.


Assuntos
Benzodiazepinas/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Imunoconjugados/química , Pirróis/química , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA