Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Natl Cancer Inst ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087596

RESUMO

Detection of cell-free circulating tumor DNA (ctDNA) from solid tumors is a fast-evolving field with significant potential for improving patient treatment outcomes. The spectrum of applications for ctDNA assays is broad and includes very diverse intended uses that will require different strategies to demonstrate utility. On September 14-15, 2023, the National Cancer Institute held an in-person workshop in Rockville, MD entitled "ctDNA in Cancer Treatment and Clinical Care". The goal of the workshop was to examine what is currently known and what needs to be determined for various ctDNA liquid biopsy use cases related to treatment and management of patients with solid tumors and to explore how the community can best assess the value of ctDNA assays and technology. Additionally, new approaches were presented that may show promise in the future. The information exchanged in this workshop will provide the community with a better understanding of this field and its potential to affect and benefit decision-making in the treatment of patients with solid tumors.

2.
Methods Mol Biol ; 2393: 179-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837180

RESUMO

Tumor development can be indirectly evaluated using features of the tumor microenvironment (TME), such as hemoglobin saturation (HbSat), blood vessel dilation, and formation of new vessels. High values of HbSat and other features of the TME could indicate high metabolic activity and could precede the formation of angiogenic tumors; therefore, changes in HbSat profile can be used as a biomarker for tumor progression. One methodology to evaluate HbSat profile over time, and correlate it with tumor development in vivo in a preclinical model, is through a dorsal skin-fold window chamber. In this chapter, we provide a detailed description of this methodology to evaluate hemoglobin saturation profile and to predict tumor development. We will cover the surgical preparation of the mouse, the installation/maintenance of the dorsal window chamber, and the imaging processing and evaluation to the HbSat profile to predict new development of new tumor areas over time. We included, in this chapter, step by step examples of the imaging processing method to obtain pixel level HbSat values from raw pixels data, the computational method to determine the HbSat profile, and the steps for the classification of the areas into tumor and no-tumor.


Assuntos
Neoplasias , Animais , Diagnóstico por Imagem , Hemoglobinas , Camundongos , Oximetria , Roedores , Microambiente Tumoral
3.
JCI Insight ; 4(7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944254

RESUMO

Hypoxic tumor niches are chief causes of treatment resistance and tumor recurrence. Sickle erythrocytes' (SSRBCs') intrinsic oxygen-sensing functionality empowers them to access such hypoxic niches wherein they form microaggregates that induce focal vessel closure. In search of measures to augment the scale of SSRBC-mediated tumor vaso-occlusion, we turned to the vascular disrupting agent, combretastatin A-4 (CA-4). CA-4 induces selective tumor endothelial injury, blood stasis, and hypoxia but fails to eliminate peripheral tumor foci. In this article, we show that introducing deoxygenated SSRBCs into tumor microvessels treated with CA-4 and sublethal radiation (SR) produces a massive surge of tumor vaso-occlusion and broadly propagated tumor infarctions that engulfs treatment-resistant hypoxic niches and eradicates established lung tumors. Tumor regression was histologically corroborated by significant treatment effect. Treated tumors displayed disseminated microvessels occluded by tightly packed SSRBCs along with widely distributed pimidazole-positive hypoxic tumor cells. Humanized HbS-knockin mice (SSKI) but not HbA-knockin mice (AAKI) showed a similar treatment response underscoring SSRBCs as the paramount tumoricidal effectors. Thus, CA-4-SR-remodeled tumor vessels license SSRBCs to produce an unprecedented surge of tumor vaso-occlusion and infarction that envelops treatment-resistant tumor niches resulting in complete tumor regression. Strategically deployed, these innovative tools constitute a major conceptual advance with compelling translational potential.


Assuntos
Anemia Falciforme/sangue , Antineoplásicos Fitogênicos/administração & dosagem , Eritrócitos Anormais/transplante , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/terapia , Animais , Adesão Celular , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada/métodos , Feminino , Técnicas de Introdução de Genes , Hemoglobina Falciforme/genética , Humanos , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/patologia , Recidiva Local de Neoplasia/irrigação sanguínea , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Estilbenos/administração & dosagem , Transplante Heterólogo/métodos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Natl Cancer Inst ; 110(9): 929-934, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931312

RESUMO

The importance of circulating free DNA (cfDNA) in cancer clinical research was recognized in 1994 when a mutated RAS gene fragment was detected in a patient's blood sample. Up to 1% of the total circulating DNA in patients with cancer is circulating tumor DNA (ctDNA) that originates from tumor cells. As ctDNA is rapidly cleared from the blood stream and can be obtained by minimally invasive methods, it can be used as a dynamic cancer biomarker for cancer early detection, diagnosis, and treatment monitoring. Despite the potential for clinical use, few ctDNA assays have been cleared or approved by the US Food and Drug Administration. As tools for clinical and translational research, current ctDNA assays face some challenges, and more research is needed to advance use of these assays. On September 29-30, 2016, the Division of Cancer Treatment and Diagnosis at the National Cancer Institute convened a workshop entitled "Circulating Tumor DNA Assays in Clinical Cancer Research" to garner input from industry experts, academia, and government research and regulatory agencies to understand and promote the translation of ctDNA assays to clinical research, with potential to advance to use in clinical practice. This Commentary presents the topics of the workshop covered in the presentations and points made in the discussions that followed: 1) background on ctDNA, 2) potential clinical utility of ctDNA assays, 3) assay technology, 4) assay clinical and analytical validation, and 5) industry perspectives. Additional relevant information that has come to light since the workshop has been included.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , DNA de Neoplasias , Neoplasias/diagnóstico , Neoplasias/genética , Detecção Precoce de Câncer , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Biópsia Líquida/normas , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/sangue , Reprodutibilidade dos Testes , Pesquisa
5.
IEEE J Transl Eng Health Med ; 4: 2800708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27730015

RESUMO

Point-of-care (POC) technologies have proved valuable in cancer detection, diagnosis, monitoring, and treatment in the developed world, and have shown promise in low-and-middle-income countries (LMIC) as well. Despite this promise, the unique design constraints presented in low-resource settings, coupled with the variety of country-specific regulatory and institutional dynamics, have made it difficult for investigators to translate successful POC cancer interventions to the LMIC markets. In response to this need, the National Cancer Institute has partnered with the National Institute of Biomedical Imaging and Bioengineering to create the National Institutes of Health Affordable Cancer Technologies (ACTs) program. This program seeks to simplify the pathway to market by funding multidisciplinary investigative teams to adapt and validate the existing technologies for cancer detection, diagnosis, and treatment in LMIC settings. The various projects under ACTs range from microfluidic cancer diagnostic tools to novel treatment devices, each geared for successful clinical adaptation to LMIC settings. Via progression through this program, each POC innovation will be uniquely leveraged for successful clinical translation to LMICs in a way not before seen in this arena.

6.
Microvasc Res ; 98: 29-39, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25500481

RESUMO

Abnormal or compromised microvascular function is a key component of various diseases. In vivo microscopy of microvessel function in preclinical models can be useful for the study of a disease state and effects of new treatments. Wide-field imaging of microvascular oxygenation via hemoglobin (Hb) saturation measurements has been applied in various applications alone and in combination with other measures of microvessel function, such as blood flow. However, most current combined imaging methods of microvessel function do not provide direct information on microvessel network connectivity or changes in connections and blood flow pathways. First-pass fluorescence (FPF) imaging of a systemically administered fluorescent contrast agent can be used to directly image blood flow pathways and connections relative to a local supplying arteriole in a quantitative manner through measurement of blood supply time (BST). Here, we demonstrate the utility of information produced by the combination of Hb saturation measurements via spectral imaging with BST measurements via FPF imaging for correlation of microvessel oxygenation with blood flow pathways and connections throughout a local network. Specifically, we show network pathway effects on oxygen transport in normal microvessels, dynamic changes associated with wound healing, and pathological effects of abnormal angiogenesis in tumor growth and development.


Assuntos
Microscopia Intravital , Microvasos/metabolismo , Neoplasias/metabolismo , Oxigênio/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Corantes Fluorescentes/química , Hemoglobinas/química , Humanos , Processamento de Imagem Assistida por Computador , Lipossomos/química , Camundongos , Camundongos Nus , Microcirculação , Microscopia de Fluorescência , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Cicatrização
7.
Vasc Cell ; 6: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101168

RESUMO

BACKGROUND: Angiogenesis is an essential process during tumor development and growth. The murine dorsal skinfold window chamber model has been used for the study of both tumor microvasculature and other vascular diseases, including the study of anti-angiogenic agents in cancer therapy. Hyperspectral imaging of oxygen status of the microvasculature has not been widely used to evaluate response to inhibition of angiogenesis in early tumor cell induced vascular development. This study demonstrates the use of two different classes of anti-angiogenic agents, one targeting the Vascular Endothelial Growth Factor (VEGF) pathway involved with vessel sprouting and the other targeting the Angiopoietin/Tie2 pathway involved in vascular destabilization. Studies evaluated the tumor microvascular response to anti-angiogenic inhibitors in the highly angiogenic renal cell carcinoma induced angiogenesis model. METHODS: Human renal cell carcinoma, Caki-2 cells, were implanted in the murine skinfold window chamber. Mice were treated with either VEGF pathway targeted small molecule inhibitor Sunitinib (100 mg/kg) or with an anti-Ang-2 monoclonal antibody (10 mg/kg) beginning the day of window chamber surgery and tumor cell implantation. Hyperspectral imaging of hemoglobin saturation was used to evaluate both the development and oxygenation of the tumor microvasculature. Tumor volume over time was also assessed over an 11-day period post surgery. RESULTS: The window chamber model was useful to demonstrate the inhibition of angiogenesis using the VEGF pathway targeted agent Sunitinib. Results show impairment of tumor microvascular development, reduced oxygenation of tumor-associated vasculature and impairment of tumor volume growth compared to control. On the other hand, this model failed to demonstrate the anti-angiogenic effect of the Ang-2 targeted agent. Follow up experiments suggest that the initial surgery of the window chamber model may interfere with such an agent thus skewing the actual effects on angiogenesis. CONCLUSIONS: Results show that this model has great potential to evaluate anti-VEGF, or comparable, targeted agents; however the mere protocol of the window chamber model interferes with proper evaluation of Ang-2 targeted agents. The limitations of this in vivo model in evaluating the response of tumor vasculature to anti-angiogenic agents are discussed.

9.
Biomed Opt Express ; 5(6): 1965-79, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940553

RESUMO

Vascular targeting agents on their own have been shown to be insufficient for complete treatment of solid tumors, emphasizing the importance of studying the vascular effects of these drugs for their use with conventional therapies in the clinic. First-pass fluorescence imaging combined with hyperspectral imaging of hemoglobin saturation of microvessels in the murine dorsal window chamber model provides an easily implementable, low cost method to analyze tumor vascular response to these agents in real-time. In this study, the authors utilized these methods to spectroscopically demonstrate distinct vessel structure, blood flow and oxygenation changes in human Caki-2 renal cell carcinoma following treatment with OXi4503 alone, Sunitinib alone and both drugs together. We showed that treatment with OXi4503 plus Sunitinib destroyed existing tumor microvessels, inhibited blood vessel recovery and impaired Caki-2 tumor growth significantly more than either treatment alone.

10.
Angiogenesis ; 17(4): 823-830, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24957885

RESUMO

Arteriovenous malformation (AVM) refers to a vascular anomaly where arteries and veins are directly connected through a complex, tangled web of abnormal AV fistulae without a normal capillary network. Hereditary hemorrhagic telangiectasia (HHT) types 1 and 2 arise from heterozygous mutations in endoglin (ENG) and activin receptor-like kinase 1 (ALK1), respectively. HHT patients possess AVMs in various organs, and telangiectases (small AVMs) along the mucocutaneous surface. Understanding why and how AVMs develop is crucial for developing therapies to inhibit the formation, growth, or maintenance of AVMs in HHT patients. Previously, we have shown that secondary factors such as wounding are required for Alk1-deficient vessels to develop skin AVMs. Here, we present evidences that AVMs establish from nascent arteries and veins rather than from remodeling of a preexistent capillary network in the wound-induced skin AVM model. We also show that VEGF can mimic the wound effect on skin AVM formation, and VEGF-neutralizing antibody can prevent skin AVM formation and ameliorate internal bleeding in Alk1-deficient adult mice. With topical applications at different stages of AVM development, we demonstrate that the VEGF blockade can prevent the formation of AVM and cease the progression of AVM development. Taken together, the presented experimental model is an invaluable system for precise molecular mechanism of action of VEGF blockades as well as for preclinical screening of drug candidates for epistaxis and gastrointestinal bleedings.


Assuntos
Malformações Arteriovenosas/metabolismo , Telangiectasia Hemorrágica Hereditária/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/farmacologia , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Heterozigoto , Camundongos , Camundongos Knockout , Mutação , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
11.
J Med Imaging (Bellingham) ; 1(1): 014503, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26158025

RESUMO

Features of the tumor microenvironment (TME), such as hemoglobin saturation (HbSat), can provide valuable information on early development and progression of tumors. HbSat correlates with high metabolism and precedes the formation of angiogenic tumors; therefore, changes in HbSat profile can be used as a biomarker for early cancer detection. In this project, we develop a methodology to evaluate HbSat for forecasting early tumor development in a mouse model. We built a delta ([Formula: see text]) cumulative feature that includes spatial and temporal distribution of HbSat for classifying tumor/normal areas. Using a two-class (normal and tumor) logistic regression, the [Formula: see text] feature successfully forecasts tumor areas in two window chamber mice ([Formula: see text] and 0.85). To assess the performance of the logistic regression-based classifier utilizing the [Formula: see text] feature of each region, we conduct a 10-fold cross-validation analysis (AUC of the [Formula: see text]). These results show that the TME features based on HbSat can be used to evaluate tumor progression and forecast new occurrences of tumor areas.

12.
J Control Release ; 171(2): 184-92, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23871960

RESUMO

Selective drug delivery to hypoxic tumor niches remains a significant therapeutic challenge that calls for new conceptual approaches. Sickle red blood cells (SSRBCs) have shown an ability to target such hypoxic niches and induce tumoricidal effects when used together with exogenous pro-oxidants. Here we determine whether the delivery of a model therapeutic encapsulated in murine SSRBCs can be enhanced by ex vivo photosensitization under conditions that delay autohemolysis to a time that coincides with maximal localization of SSRBCs in a hypoxic tumor. Hyperspectral imaging of 4T1 carcinomas shows oxygen saturation levels <10% in a large fraction (commonly 50% or more) of the tumor. Using video microscopy of dorsal skin window chambers implanted with 4T1 tumors, we demonstrate that allogeneic SSRBCs, but not normal RBCs (nRBCs), selectively accumulate in hypoxic 4T1 tumors between 12 and 24h after systemic administration. We further show that ex vivo photo-oxidation can program SSRBCs to postpone hemolysis/release of a model therapeutic to a point that coincides with their maximum sequestration in hypoxic tumor microvessels. Under these conditions, drug-loaded photosensitized SSRBCs show a 3-4 fold greater drug delivery to tumors compared to non-photosensitized SSRBCs, drug-loaded photosensitized nRBCs, and free drug. These results demonstrate that photo-oxidized SSRBCs, but not photo-oxidized nRBCs, sequester and hemolyze in hypoxic tumors and release substantially more drug than photo-oxidized nRBCs and non-photo-oxidized SSRBCs. Photo-oxidation of drug-loaded SSRBCs thus appears to exploit the unique tumor targeting and carrier properties of SSRBCs to optimize drug delivery to hypoxic tumors. Such programmed and drug-loaded SSRBCs therefore represent a novel and useful tool for augmenting drug delivery to hypoxic solid tumors.


Assuntos
Anemia Falciforme , Sistemas de Liberação de Medicamentos , Eritrócitos , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Eritrócitos/efeitos dos fármacos , Eritrócitos/efeitos da radiação , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Hemólise , Humanos , Hipóxia , Luz , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Microvasos , Neoplasias/irrigação sanguínea , Oxirredução , Fotólise , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Baço/metabolismo
13.
Opt Lett ; 38(3): 332-4, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23381428

RESUMO

Hyperspectral imaging of hemoglobin (Hb) saturation and first-pass fluorescence imaging of blood transit time were combined to analyze the oxygenation of and blood flow through microvessel networks. The combination imaging technique was demonstrated in a mouse dorsal window chamber model of a growing Caki-2 human renal cell carcinoma over time. Data from Hb saturation and blood supply time maps show the formation of arteriovenous malformations and shunting of blood directly from arteries to the tumor core and into veins in the periphery of the tumor. Images and data analysis show these malformations result in an oxygenated environment ideal for a tumor to proliferate.


Assuntos
Hemoglobinas/metabolismo , Microscopia de Fluorescência/métodos , Neoplasias/patologia , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Hemoglobinas/química , Humanos , Microcirculação , Neoplasias/metabolismo , Neovascularização Patológica , Imagem Óptica/métodos , Óptica e Fotônica/métodos , Oxigênio/metabolismo , Fluxo Sanguíneo Regional , Espectrofotometria Infravermelho/métodos , Fatores de Tempo
14.
PLoS One ; 8(1): e52543, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326340

RESUMO

Resistance of hypoxic solid tumor niches to chemotherapy and radiotherapy remains a major scientific challenge that calls for conceptually new approaches. Here we exploit a hitherto unrecognized ability of sickled erythrocytes (SSRBCs) but not normal RBCs (NLRBCs) to selectively target hypoxic tumor vascular microenviroment and induce diffuse vaso-occlusion. Within minutes after injection SSRBCs, but not NLRBCs, home and adhere to hypoxic 4T1 tumor vasculature with hemoglobin saturation levels at or below 10% that are distributed over 70% of the tumor space. The bound SSRBCs thereupon form microaggregates that obstruct/occlude up to 88% of tumor microvessels. Importantly, SSRBCs, but not normal RBCs, combined with exogenous prooxidant zinc protoporphyrin (ZnPP) induce a potent tumoricidal response via a mutual potentiating mechanism. In a clonogenic tumor cell survival assay, SSRBC surrogate hemin, along with H(2)O(2) and ZnPP demonstrate a similar mutual potentiation and tumoricidal effect. In contrast to existing treatments directed only to the hypoxic tumor cell, the present approach targets the hypoxic tumor vascular environment and induces injury to both tumor microvessels and tumor cells using intrinsic SSRBC-derived oxidants and locally generated ROS. Thus, the SSRBC appears to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing cancer treatments.


Assuntos
Citotoxicidade Imunológica/imunologia , Eritrócitos Anormais/imunologia , Neoplasias Experimentais/imunologia , Neovascularização Patológica/imunologia , Anemia Falciforme/sangue , Anemia Falciforme/imunologia , Animais , Western Blotting , Linhagem Celular Tumoral , Terapia Combinada , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/transplante , Feminino , Heme Oxigenase-1/metabolismo , Hemina/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipóxia , Imunoterapia Adotiva , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/terapia , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
15.
J Biomed Opt ; 17(6): 067002, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22734780

RESUMO

Fluorescence spectroscopy has been widely investigated as a technique for identifying pathological tissue; however, unrelated subject-to-subject variations in spectra complicate data analysis and interpretation. We describe and evaluate a new biosensing technique, differential laser-induced perturbation spectroscopy (DLIPS), based on deep ultraviolet (UV) photochemical perturbation in combination with difference spectroscopy. This technique combines sequential fluorescence probing (pre- and post-perturbation) with sub-ablative UV perturbation and difference spectroscopy to provide a new spectral dimension, facilitating two improvements over fluorescence spectroscopy. First, the differential technique eliminates significant variations in absolute fluorescence response within subject populations. Second, UV perturbations alter the extracellular matrix (ECM), directly coupling the DLIPS response to the biological structure. Improved biosensing with DLIPS is demonstrated in vivo in a murine model of chemically induced skin lesion development. Component loading analysis of the data indicates that the DLIPS technique couples to structural proteins in the ECM. Analysis of variance shows that DLIPS has a significant response to emerging pathology as opposed to other population differences. An optimal likelihood ratio classifier for the DLIPS dataset shows that this technique holds promise for improved diagnosis of epithelial pathology. Results further indicate that DLIPS may improve diagnosis of tissue by augmenting fluorescence spectra (i.e. orthogonal sensing).


Assuntos
Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Animais , Área Sob a Curva , Técnicas Biossensoriais , Desenho de Equipamento , Matriz Extracelular/metabolismo , Reações Falso-Positivas , Feminino , Lasers , Camundongos , Camundongos Nus , Análise Multivariada , Fotoquímica/métodos , Análise de Componente Principal , Pele/patologia , Neoplasias Cutâneas/patologia , Raios Ultravioleta
16.
Microvasc Res ; 82(3): 199-209, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21787792

RESUMO

The rodent dorsal window chamber is a widely used in vivo model of the microvasculature. The model consists of a 1cm region of exposed microvasculature in the rodent dorsal skin that is immobilized by surgically implanted titanium frames, allowing the skin microvasculature to be visualized. We describe a detailed protocol for surgical implantation of the dorsal window chamber which enables researchers to perform the window chamber implantation surgery. We further describe subsequent wide-field functional imaging of the chamber to obtain hemodynamic information in the form of blood oxygenation and blood flow on a cm size region of interest. Optical imaging techniques, such as intravital microscopy, have been applied extensively to the dorsal window chamber to study microvascular-related disease and conditions. Due to the limited field of view of intravital microscopy, detailed hemodynamic information typically is acquired from small regions of interest, typically on the order of hundreds of µm. The wide-field imaging techniques described herein complement intravital microscopy, allowing researchers to obtain hemodynamic information at both microscopic and macroscopic spatial scales. Compared with intravital microscopy, wide-field functional imaging requires simple instrumentation, is inexpensive, and can give detailed metabolic information over a wide field of view.


Assuntos
Diagnóstico por Imagem , Hemorreologia , Microcirculação , Microvasos/fisiologia , Oxiemoglobinas/metabolismo , Pele/irrigação sanguínea , Animais , Cricetinae , Diagnóstico por Imagem/instrumentação , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Camundongos , Modelos Animais , Fluxo Sanguíneo Regional
17.
J Biomed Opt ; 15(1): 011111, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20210437

RESUMO

Abnormal microvascular physiology and function is common in many diseases. Numerous pathologies include hypervascularity, aberrant angiogenesis, or abnormal vascular remodeling among the characteristic features of the disease, and quantitative imaging and measurement of microvessel function can be important to increase understanding of these diseases. Several optical techniques are useful for direct imaging of microvascular function. Spectral imaging is one such technique that can be used to assess microvascular oxygen transport function with high spatial and temporal resolution in microvessel networks through measurements of hemoglobin saturation. We highlight novel observation made with our intravital microscopy spectral imaging system employed with mouse dorsal skin-fold window chambers for imaging hemoglobin saturation in microvessel networks. Specifically, we image acute oxygenation fluctuations in a tumor microvessel network, the development of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia, and the formation of spontaneous and induced microvascular thromboses and occlusions.


Assuntos
Anastomose Arteriovenosa/fisiopatologia , Análise Espectral/métodos , Trombose/fisiopatologia , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Hemoglobinas/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Nus , Microvasos/fisiologia , Microvasos/fisiopatologia , Transplante de Neoplasias , Neovascularização Patológica/fisiopatologia , Oxigênio/metabolismo , Técnica de Janela Cutânea , Telangiectasia Hemorrágica Hereditária
18.
Acta Biomater ; 6(9): 3491-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20226885

RESUMO

Well-designed biomaterial polymer particle-based vaccines will optimally promote immune cell antigen-presenting behavior while minimizing adverse inflammatory responses to the particles and encapsulated drugs or adjuvants. It is important in the design of particle-based vaccines to consider possible harmful effects of immune response on tissue at the vaccination site. Intravital microscopy with rodent dorsal skin window chambers enables in vivo serial observations in the same animal, and such models which have been used to study angiogenesis and macrophage response to implanted biomaterials may also be useful for the development of particle-based vaccines. To our knowledge there have been no reports where intravital microscopy has documented real-time immune cell localization and potentially harmful co-localized tissue effects. In this proof-of-principle study we used fluorescence and spectral imaging intravital microscopy of mouse window chambers to measure macrophage localization and co-localized tissue microvessel hemoglobin saturation changes in response to an immunogenic stimulus from polymer particles loaded with lipopolysaccharide (LPS) serving as a model vaccine/adjuvant system. We observed greater and faster macrophage localization to stronger inflammatory stimuli from LPS-loaded particle doses, a trend of decreased microvessel oxygenation with increased macrophage accumulation and, in an extreme case, complete microvessel collapse accompanied by tissue necrosis. Our technique may be useful for optimizing design of particle-based vaccines and may give insight into the use of hemoglobin saturation as a biomarker of tissue inflammation for clinical investigations of particle-based vaccines.


Assuntos
Imageamento Tridimensional/métodos , Macrófagos/imunologia , Microscopia/métodos , Microvasos/metabolismo , Oxigênio/metabolismo , Análise de Variância , Animais , Linhagem Celular , Feminino , Hemoglobinas/metabolismo , Macrófagos/citologia , Camundongos , Fatores de Tempo
19.
Oncol Rep ; 23(3): 685-92, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20127007

RESUMO

4T1 mouse mammary adenocarcinomas and Caki-1 human renal cell carcinomas grown in mouse dorsal window chambers were serially treated with the vascular disrupting agent (VDA) OXi4503 and their responses compared. The real-time in vivo response was assessed using spectral imaging of microvascular hemoglobin saturation. To our knowledge this is the first use of spectral imaging technology for investigation of vascular disrupting agents. Previous research showing tumor size dependence in the treatment response to VDAs suggested that for the size of tumors used in this study only a moderate response would be observed; however, the tumors unexpectedly had very different responses to treatment. Caki-1 tumors showed little permanent vessel damage and experienced transient vessel collapse with time-dependent oxygenation changes followed by recovery starting at 6 h after treatment. Caki-1 tumors did not manifest necrotic avascular regions even after repeated treatments. These results are consistent with those obtained using other imaging modalities and histology. In contrast, similarly sized 4T1 tumors showed extensive vessel disintegration, minor vascular collapse, and a drop in tumor oxygenation up to 6 h post-treatment, after which reperfusion of collapsed vessels and extensive vascular remodeling and neovascularization of the tumor rim occurred from 8-48 h. The completely disintegrated vessels did not recover and left behind avascular and apparently necrotic regions in the tumor core. Spectral imaging appears to be a useful technique for in vivo investigation of vascular disrupting agents. The differential responses of these two tumor-types suggest that further investigation of the mechanisms of action of VDAs and individual characterization of tumor VDA-responses may be needed for optimal clinical use of these agents.


Assuntos
Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Difosfatos/uso terapêutico , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/tratamento farmacológico , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/tratamento farmacológico , Estilbenos/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Clin Invest ; 119(11): 3487-96, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19805914

RESUMO

Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.


Assuntos
Malformações Arteriovenosas/diagnóstico , Diagnóstico por Imagem/métodos , Telangiectasia Hemorrágica Hereditária/patologia , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Animais , Malformações Arteriovenosas/ultraestrutura , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/lesões , Modelos Animais de Doenças , Feminino , Homeostase , Masculino , Camundongos , Mutação , Telangiectasia Hemorrágica Hereditária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA