Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23730, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887447

RESUMO

MUC4 is a transmembrane mucin expressed on various epithelial surfaces, including respiratory and gastrointestinal tracts, and helps in their lubrication and protection. MUC4 is also aberrantly overexpressed in various epithelial malignancies and functionally contributes to cancer development and progression. MUC4 is putatively cleaved at the GDPH site into a mucin-like α-subunit and a membrane-tethered growth factor-like ß-subunit. Due to the presence of several functional domains, the characterization of MUC4ß is critical for understanding MUC4 biology. We developed a method to produce and purify multi-milligram amounts of recombinant MUC4ß (rMUC4ß). Purified rMUC4ß was characterized by Far-UV CD and I-TASSER-based protein structure prediction analyses, and its ability to interact with cellular proteins was determined by the affinity pull-down assay. Two of the three EGF-like domains exhibited typical ß-fold, while the third EGF-like domain and vWD domain were predominantly random coils. We observed that rMUC4ß physically interacts with Ezrin and EGFR family members. Overall, this study describes an efficient and simple strategy for the purification of biologically-active rMUC4ß that can serve as a valuable reagent for a variety of biochemical and functional studies to elucidate MUC4 function and generating domain-specific antibodies and vaccines for cancer immunotherapy.


Assuntos
Mucina-4/genética , Mucina-4/metabolismo , Subunidades Proteicas , Proteínas Recombinantes , Clonagem Molecular , Expressão Gênica , Ordem dos Genes , Humanos , Espectrometria de Massas , Modelos Moleculares , Mucina-4/química , Mucina-4/isolamento & purificação , Plasmídeos/genética , Ligação Proteica , Relação Estrutura-Atividade
2.
Biomolecules ; 10(10)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080786

RESUMO

The autosomal-dominant pleiotropic disorder called oculodentodigital dysplasia (ODDD) is caused by mutations in the gap junction protein Cx43. Of the 73 mutations identified to date, over one-third are localized in the cytoplasmic loop (Cx43CL) domain. Here, we determined the mechanism by which three ODDD mutations (M147T, R148Q, and T154A), all of which localize within the predicted 1-5-10 calmodulin-binding motif of the Cx43CL, manifest the disease. Nuclear magnetic resonance (NMR) and circular dichroism revealed that the three ODDD mutations had little-to-no effect on the ability of the Cx43CL to form α-helical structure as well as bind calmodulin. Combination of microscopy and a dye-transfer assay uncovered these mutations increased the intracellular level of Cx43 and those that trafficked to the plasma membrane did not form functional channels. NMR also identify that CaM can directly interact with the Cx43CT domain. The Cx43CT residues involved in the CaM interaction overlap with tyrosines phosphorylated by Pyk2 and Src. In vitro and in cyto data provide evidence that the importance of the CaM interaction with the Cx43CT may lie in restricting Pyk2 and Src phosphorylation, and their subsequent downstream effects.


Assuntos
Calmodulina/genética , Conexina 43/genética , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Deformidades Congênitas do Pé/genética , Sindactilia/genética , Anormalidades Dentárias/genética , Calmodulina/ultraestrutura , Movimento Celular/genética , Conexina 43/ultraestrutura , Anormalidades Craniofaciais/patologia , Citoplasma/genética , Anormalidades do Olho/patologia , Quinase 2 de Adesão Focal/genética , Deformidades Congênitas do Pé/patologia , Junções Comunicantes/genética , Células HeLa , Humanos , Mutação com Perda de Função/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Transporte Proteico/genética , Sindactilia/patologia , Anormalidades Dentárias/patologia
3.
Proc Natl Acad Sci U S A ; 117(21): 11409-11420, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404420

RESUMO

Formation of G-quadruplex (G4) DNA structures in key regulatory regions in the genome has emerged as a secondary structure-based epigenetic mechanism for regulating multiple biological processes including transcription, replication, and telomere maintenance. G4 formation (folding), stabilization, and unfolding must be regulated to coordinate G4-mediated biological functions; however, how cells regulate the spatiotemporal formation of G4 structures in the genome is largely unknown. Here, we demonstrate that endogenous oxidized guanine bases in G4 sequences and the subsequent activation of the base excision repair (BER) pathway drive the spatiotemporal formation of G4 structures in the genome. Genome-wide mapping of occurrence of Apurinic/apyrimidinic (AP) site damage, binding of BER proteins, and G4 structures revealed that oxidized base-derived AP site damage and binding of OGG1 and APE1 are predominant in G4 sequences. Loss of APE1 abrogated G4 structure formation in cells, which suggests an essential role of APE1 in regulating the formation of G4 structures in the genome. Binding of APE1 to G4 sequences promotes G4 folding, and acetylation of APE1, which enhances its residence time, stabilizes G4 structures in cells. APE1 subsequently facilitates transcription factor loading to the promoter, providing mechanistic insight into the role of APE1 in G4-mediated gene expression. Our study unravels a role of endogenous oxidized DNA bases and APE1 in controlling the formation of higher-order DNA secondary structures to regulate transcription beyond its well-established role in safeguarding the genomic integrity.


Assuntos
Dano ao DNA , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Quadruplex G , Células A549 , Acetilação , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Expressão Gênica , Genes myc , Genoma Humano , Guanina/química , Guanina/metabolismo , Células HCT116 , Humanos , Oxirredução , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Genes Cancer ; 10(3-4): 52-62, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31258832

RESUMO

Mucin 4 (MUC4) is a high molecular weight glycoprotein that is differentially overexpressed in pancreatic cancer (PC), functionally contributes to disease progression, and correlates with poor survival. Further, due to its aberrant glycosylation and extensive splicing, MUC4 is a potential target for cancer immunotherapy. Our previous studies have demonstrated the utility of amphiphilic polyanhydride nanoparticles as a useful platform for the development of protein-based prophylactic and therapeutic vaccines. In the present study, we encapsulated purified recombinant human MUC4-beta (MUC4ß) protein in polyanhydride (20:80 CPTEG:CPH) nanoparticles (MUC4ß-nanovaccine) and evaluated its ability to activate dendritic cells and induce adaptive immunity. Immature dendritic cells when pulsed with MUC4ß-nanovaccine exhibited significant increase in the surface expressions of MHC I and MHC II and costimulatory molecules (CD80 and CD86), as well as, secretion of pro-inflammatory cytokines (IFN-γ, IL-6, and IL-12) as compared to cells exposed to MUC4ß alone or MUC4ß mixed with blank nanoparticles (MUC4ß+NP). Following immunization, as compared to the other formulations, MUC4ß-nanovaccine elicited higher IgG2b to IgG1 ratio of anti-MUC4ß-antibodies suggesting a predominantly Th1-like class switching. Thus, our findings demonstrate MUC4ß-nanovaccine as a novel platform for PC immunotherapy.

5.
J Cell Sci ; 130(19): 3308-3321, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818996

RESUMO

Growth suppression mediated by connexin 37 (Cx37; also known as GJA4) requires interaction between its C-terminus and functional pore-forming domain. Using rat insulinoma cells, we show that Cx37 induces cell death and cell cycle arrest, and slowed cell cycling. Whether differential phosphorylation might regulate intramolecular interactions, and consequently the growth-suppressive phenotype, is unknown. Protein kinase C inhibition increased the open state probability of low-conductance gap junction channels (GJChs) and reduced GJCh closed state probability. Substituting alanine at serine residues 275, 302 and 328 eliminated Cx37-induced cell death, supported proliferation and reduced the GJCh closed state probability. With additional alanine for serine substitutions at residues 285, 319, 321 and 325, Cx37-induced cell death was eliminated and the growth arrest period prolonged, and GJCh closed state probability was restored. With aspartate substitution at these seven sites, apoptosis was induced and the open state probability of large conductance GJChs (and hemichannels) was increased. These data suggest that differential phosphorylation of the C-terminus regulates channel conformation and, thereby, cell cycle progression and cell survival.


Assuntos
Ciclo Celular/fisiologia , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Conexinas/genética , Junções Comunicantes/genética , Mutação de Sentido Incorreto , Fosforilação , Ratos
6.
Biomol NMR Assign ; 11(2): 137-141, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28251507

RESUMO

Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the 1H, 15N, and 13C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the 1H-15N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis-trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.


Assuntos
Conexinas/química , Ressonância Magnética Nuclear Biomolecular , Animais , Camundongos , Domínios Proteicos , Proteína alfa-4 de Junções Comunicantes
7.
J Biol Chem ; 291(30): 15867-80, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27235399

RESUMO

Connexin43 (Cx43) assembly and degradation, the regulation of electrical and metabolic coupling, as well as modulating the interaction with other proteins, involve phosphorylation. Here, we identified and characterized the biological significance of a novel tyrosine kinase that phosphorylates Cx43, tyrosine kinase 2 (Tyk2). Activation of Tyk2 led to a decrease in Cx43 gap junction communication by increasing the turnover rate of Cx43 from the plasma membrane. Tyk2 directly phosphorylated Cx43 residues Tyr-247 and Tyr-265, leading to indirect phosphorylation on residues Ser-279/Ser-282 (MAPK) and Ser-368 (PKC). Although this phosphorylation pattern is similar to what has been observed following Src activation, the response caused by Tyk2 occurred when Src was inactive in NRK cells. Knockdown of Tyk2 at the permissive temperature (active v-Src) in LA-25 cells decreased Cx43 phosphorylation, indicating that although activation of Tyk2 and v-Src leads to phosphorylation of the same Cx43CT residues, they are not identical in level at each site. Additionally, angiotensin II activation of Tyk2 increased the intracellular protein level of Cx43 via STAT3. These findings indicate that, like Src, Tyk2 can also inhibit gap junction communication by phosphorylating Cx43.


Assuntos
Conexina 43/biossíntese , Junções Comunicantes/enzimologia , Regulação da Expressão Gênica , TYK2 Quinase/metabolismo , Animais , Linhagem Celular , Conexina 43/genética , Junções Comunicantes/genética , Proteína Oncogênica pp60(v-src)/genética , Proteína Oncogênica pp60(v-src)/metabolismo , Fosforilação/genética , Ratos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , TYK2 Quinase/genética
8.
J Biol Chem ; 291(26): 13465-78, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27189942

RESUMO

An elaborate network of dynamic lipid membranes, termed tubular recycling endosomes (TRE), coordinates the process of endocytic recycling in mammalian cells. The C-terminal Eps15 homology domain (EHD)-containing proteins have been implicated in the bending and fission of TRE, thus regulating endocytic recycling. EHD proteins have an EH domain that interacts with proteins containing an NPF motif. We found that NPF-containing EHD1 interaction partners such as molecules interacting with CasL-like1 (MICAL-L1) and Syndapin2 are essential for TRE biogenesis. Also crucial for TRE biogenesis is the generation of phosphatidic acid, an essential lipid component of TRE that serves as a docking point for MICAL-L1 and Syndapin2. EHD1 and EHD3 have 86% amino acid identity; they homo- and heterodimerize and partially co-localize to TRE. Despite their remarkable identity, they have distinct mechanistic functions. EHD1 induces membrane vesiculation, whereas EHD3 supports TRE biogenesis and/or stabilization by an unknown mechanism. While using phospholipase D inhibitors (which block the conversion of glycerophospholipids to phosphatidic acid) to deplete cellular TRE, we observed that, upon inhibitor washout, there was a rapid and dramatic regeneration of MICAL-L1-marked TRE. Using this "synchronized" TRE biogenesis system, we determined that EHD3 is involved in the stabilization of TRE rather than in their biogenesis. Moreover, we identify the residues Ala-519/Asp-520 of EHD1 and Asn-519/Glu-520 of EHD3 as defining the selectivity of these two paralogs for NPF-containing binding partners, and we present a model to explain the atomic mechanism and provide new insight for their differential roles in vesiculation and tubulation, respectively.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Lipídeos de Membrana/metabolismo , Microtúbulos/metabolismo , Peptídeos/metabolismo , Asparagina/genética , Asparagina/metabolismo , Proteínas de Transporte/genética , Endossomos/genética , Glutamina/genética , Glutamina/metabolismo , Células HeLa , Humanos , Lipídeos de Membrana/genética , Microtúbulos/genética , Peptídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
AIMS Biophys ; 3(1): 195-208, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28492064

RESUMO

The human homolog of Drosophila ecdysoneless protein (ECD) is a p53 binding protein that stabilizes and enhances p53 functions. Homozygous deletion of mouse Ecd is early embryonic lethal and Ecd deletion delays G1-S cell cycle progression. Importantly, ECD directly interacts with the Rb tumor suppressor and competes with the E2F transcription factor for binding to Rb. Further studies demonstrated ECD is overexpressed in breast and pancreatic cancers and its overexpression correlates with poor patient survival. ECD overexpression together with Ras induces cellular transformation through upregulation of autophagy. Recently we demonstrated that CK2 mediated phosphorylation of ECD and interaction with R2TP complex are important for its cell cycle regulatory function. Considering that ECD is a component of multiprotein complexes and its crystal structure is unknown, we characterized ECD structure by circular dichroism measurements and sequence analysis software. These analyses suggest that the majority of ECD is composed of α-helices. Furthermore, small angle X-ray scattering (SAXS) analysis showed that deletion fragments, ECD(1-432) and ECD(1-534), are both well-folded and reveals that the first 400 residues are globular and the next 100 residues are in an extended cylindrical structure. Taking all these results together, we speculate that ECD acts like a structural hub or scaffolding protein in its association with its protein partners. In the future, the hypothetical model presented here for ECD will need to be tested experimentally.

10.
Sci Rep ; 5: 9759, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26044153

RESUMO

MUC16, precursor of the most widely used ovarian cancer biomarker CA125, is up regulated in multiple malignancies and is associated with poor prognosis. While the pro-tumorigenic and metastatic roles of MUC16 are ascribed to the cell-associated carboxyl-terminal MUC16 (MUC16-Cter), the exact biochemical nature of MUC16 cleavage generating MUC16-Cter has remained unknown. Using different lengths of dual-epitope (N-terminal FLAG- and C-terminal HA-Tag) tagged C-terminal MUC16 fragments, we demonstrate that MUC16 cleavage takes place in the juxta-membrane ectodomain stretch of twelve amino acids that generates a ~17 kDa cleaved product and is distinct from the predicted sites. This was further corroborated by domain swapping experiment. Further, the cleavage of MUC16 was found to take place in the Golgi/post-Golgi compartments and is dependent on the acidic pH in the secretory pathway. A similar pattern of ~17 kDa cleaved MUC16 was observed in multiple cell types eliminating the possibility of cell type specific phenomenon. MUC16-Cter translocates to the nucleus in a cleavage dependent manner and binds to the chromatin suggesting its involvement in regulation of gene expression. Taken together, we demonstrate for the first time the oft-predicted cleavage of MUC16 that is critical in designing successful therapeutic interventions based on MUC16.


Assuntos
Antígeno Ca-125/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Antígeno Ca-125/química , Antígeno Ca-125/genética , Membrana Celular/metabolismo , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Elastase de Leucócito/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Estabilidade Proteica , Transporte Proteico , Proteólise , Transdução de Sinais , Ubiquitinação
11.
J Cell Sci ; 127(Pt 15): 3269-79, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24849651

RESUMO

Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health.


Assuntos
Membrana Celular/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Linfócitos T/imunologia , Animais , Comunicação Celular , Linhagem Celular Transformada , Conexina 43/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Junções Comunicantes/fisiologia , Genes src/genética , Fosforilação , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Ratos , Transgenes/genética
12.
Am J Physiol Cell Physiol ; 305(12): C1246-56, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24133065

RESUMO

Connexin 37 (Cx37) suppresses cell proliferation when expressed in rat insulinoma (Rin) cells, an effect also manifest in vivo during vascular development and in response to tissue injury. Mutant forms of Cx37 with nonfunctional channels but normally localized, wild-type carboxy termini are not growth suppressive. Here we determined whether the carboxy-terminal (CT) domain is required for Cx37-mediated growth suppression and whether the Cx37 pore-forming domain can be replaced with the Cx43 pore-forming domain and still retain growth-suppressive properties. We show that despite forming functional gap junction channels and hemichannels, Cx37 with residues subsequent to 273 replaced with a V5-epitope tag (Cx37-273tr*V5) had no effect on the proliferation of Rin cells, did not facilitate G1-cell cycle arrest with serum deprivation, and did not prolong cell cycle time comparably to the wild-type protein. The chimera Cx43*CT37, comprising the pore-forming domain of Cx43 and CT of Cx37, also did not suppress proliferation, despite forming functional gap junctions with a permselective profile similar to wild-type Cx37. Differences in channel behavior of both Cx37-273tr*V5 and Cx43*CT37 relative to their wild-type counterparts and failure of the Cx37-CT to interact as the Cx43-CT does with the Cx43 cytoplasmic loop suggest that the Cx37-CT and pore-forming domains are both essential to growth suppression by Cx37.


Assuntos
Conexinas/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Conexinas/genética , Fenômenos Eletrofisiológicos , Regulação Neoplásica da Expressão Gênica/fisiologia , Insulinoma/patologia , Mutação , Neoplasias Pancreáticas/patologia , Conformação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína alfa-4 de Junções Comunicantes
13.
J Biol Chem ; 288(42): 30172-30180, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24019528

RESUMO

Endocytic recycling involves the return of membranes and receptors to the plasma membrane following their internalization into the cell. Recycling generally occurs from a series of vesicular and tubular membranes localized to the perinuclear region, collectively known as the endocytic recycling compartment. Within this compartment, receptors are sorted into tubular extensions that later undergo vesiculation, allowing transport vesicles to move along microtubules and return to the cell surface where they ultimately undergo fusion with the plasma membrane. Recent studies have led to the hypothesis that the C-terminal Eps15 homology domain (EHD) ATPase proteins are involved in the vesiculation process. Here, we address the functional roles of the four EHD proteins. We developed a novel semipermeabilized cell system in which addition of purified EHD proteins to reconstitute vesiculation allows us to assess the ability of each protein to vesiculate MICAL-L1-decorated tubular recycling endosomes (TREs). Using this assay, we show that EHD1 vesiculates membranes, consistent with enhanced TRE generation observed upon EHD1 depletion. EHD4 serves a role similar to that of EHD1 in TRE vesiculation, whereas EHD2, despite being capable of vesiculating TREs in the semipermeabilized cells, fails to do so in vivo. Surprisingly, the addition of EHD3 causes tubulation of endocytic membranes in our semipermeabilized cell system, consistent with the lack of tubulation observed upon EHD3 depletion. Our novel vesiculation assay and in vitro electron microscopy analysis, combined with in vivo data, provide evidence that the functions of both EHD1 and EHD4 are primarily in TRE membrane vesiculation, whereas EHD3 is a membrane-tubulating protein.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endossomos/química , Endossomos/genética , Endossomos/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/química , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
14.
Am J Physiol Heart Circ Physiol ; 303(10): H1208-18, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22982782

RESUMO

Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity. ATP has been shown in noncardiac systems to initiate fibroblast activation. Therefore, we propose that ATP release through Panx1 channels and subsequent fibroblast activation in the heart drives the development of fibrosis in the heart following myocardial infarction. We identified for the first time that Panx1 is localized within sarcolemmal membranes of canine cardiac myocytes where it directly interacts with the postsynaptic density 95/Drosophila disk large/zonula occludens-1-containing scaffolding protein synapse-associated protein 97 via its carboxyl terminal domain (amino acids 300-357). Induced ischemia rapidly increased glycosylation of Panx1, resulting in increased trafficking to the plasma membrane as well as increased interaction with synapse-associated protein 97. Cellular stress enhanced ATP release from myocyte Panx1 channels, which, in turn, causes fibroblast transformation to the activated myofibroblast phenotype via activation of the MAPK and p53 pathways, both of which are involved in the development of cardiac fibrosis. ATP release through Panx1 channels in cardiac myocytes during ischemia may be an early paracrine event leading to profibrotic responses to ischemic cardiac injury.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Comunicação Parácrina , Animais , Membrana Celular/metabolismo , Técnicas de Cocultura , Conexinas/genética , Modelos Animais de Doenças , Cães , Fibroblastos/patologia , Fibrose , Glicosilação , Células Madin Darby de Rim Canino , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteínas do Tecido Nervoso/genética , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico , Sarcolema/metabolismo , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
15.
J Biol Chem ; 287(33): 27771-88, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22718765

RESUMO

In Schwann cells, connexin 32 (Cx32) can oligomerize to form intracellular gap junction channels facilitating a shorter pathway for metabolite diffusion across the layers of the myelin sheath. The mechanisms of Cx32 intracellular channel regulation have not been clearly defined. However, Ca(2+), pH, and the phosphorylation state can regulate Cx32 gap junction channels, in addition to the direct interaction of protein partners with the carboxyl-terminal (CT) domain. In this study, we used different biophysical methods to determine the structure and characterize the interaction of the Cx32CT domain with the protein partners synapse-associated protein 97 (SAP97) and calmodulin (CaM). Our results revealed that the Cx32CT is an intrinsically disordered protein that becomes α-helical upon binding CaM. We identified the GUK domain as the minimal SAP97 region necessary for the Cx32CT interaction. The Cx32CT residues affected by the binding of CaM and the SAP97 GUK domain were determined as well as the dissociation constants for these interactions. We characterized three Cx32CT Charcot-Marie-Tooth disease mutants (R219H, R230C, and F235C) and identified that whereas they all formed functional channels, they all showed reduced binding affinity for SAP97 and CaM. Additionally, we report that in RT4-D6P2T rat schwannoma cells, Cx32 is differentially phosphorylated and exists in a complex with SAP97 and CaM. Our studies support the importance of protein-protein interactions in the regulation of Cx32 gap junction channels and myelin homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calmodulina/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Células de Schwann/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Calmodulina/química , Calmodulina/genética , Linhagem Celular Tumoral , Conexinas/química , Conexinas/genética , Proteína 1 Homóloga a Discs-Large , Junções Comunicantes/química , Junções Comunicantes/genética , Guanilato Quinases/química , Guanilato Quinases/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Células de Schwann/citologia , Proteína beta-1 de Junções Comunicantes
16.
Traffic ; 13(5): 745-57, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22284051

RESUMO

Rabankyrin-5 (Rank-5) has been implicated as an effector of the small GTPase Rab5 and plays an important role in macropinocytosis. We have now identified Rank-5 as an interaction partner for the recycling regulatory protein, Eps15 homology domain 1 (EHD1). We have demonstrated this interaction by glutathione S-transferase-pulldown, yeast two-hybrid assay, isothermal calorimetry and co-immunoprecipitation, and found that the binding occurs between the EH domain of EHD1 and the NPFED motif of Rank-5. Similar to EHD1, we found that Rank-5 colocalizes and interacts with components of the retromer complex such as vacuolar protein sorting 26 (Vps26), suggesting a role for Rank-5 in retromer-based transport. Indeed, depletion of Rank-5 causes mislocalization of Vps26 and affects both the retrieval of mannose 6-phosphate receptor transport to the Golgi from endosomes and biosynthetic transport. Moreover, Rank-5 is required for normal retromer distribution, as overexpression of a wild-type Rank-5-small interfering RNA-resistant construct rescues retromer mislocalization. Finally, we show that depletion of either Rank-5 or EHD1 impairs secretion of vesicular stomatitis virus glycoprotein. Overall, our data identify a new interaction between Rank-5 and EHD1, and novel endocytic regulatory roles that include retromer-based transport and secretion.


Assuntos
Endocitose , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Animais , Transporte Biológico , Catepsina G/metabolismo , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas de Ligação a Fosfato , Termodinâmica , Técnicas do Sistema de Duplo-Híbrido , Proteínas do Envelope Viral/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
17.
Protein Sci ; 18(12): 2471-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19798736

RESUMO

Eps15 homology (EH)-domain containing proteins are regulators of endocytic membrane trafficking. EH-domain binding to proteins containing the tripeptide NPF has been well characterized, but recent studies have shown that EH-domains are also able to interact with ligands containing DPF or GPF motifs. We demonstrate that the three motifs interact in a similar way with the EH-domain of EHD1, with the NPF motif having the highest affinity due to the presence of an intermolecular hydrogen bond. The weaker affinity for the DPF and GPF motifs suggests that if complex formation occurs in vivo, they may require high ligand concentrations, the presence of successive motifs and/or specific flanking residues.


Assuntos
Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
18.
Circ Res ; 104(9): 1103-12, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19342602

RESUMO

Lateralization of the ventricular gap junction protein connexin 43 (Cx43) occurs in epicardial border zone myocytes following myocardial infarction (MI) and is arrhythmogenic. Alterations in Cx43 protein partners have been hypothesized to play a role in lateralization although mechanisms by which this occurs are unknown. To examine potential mechanisms we did nuclear magnetic resonance, yeast 2-hybrid, and surface plasmon resonance studies and found that the SH3 domain of the tyrosine kinase c-Src binds to the Cx43 scaffolding protein zonula occludens-1 (ZO-1) with a higher affinity than does Cx43. This suggests c-Src outcompetes Cx43 for binding to ZO-1, thus acting as a chaperone for ZO-1 and causing unhooking from Cx43. To determine whether c-Src/ZO-1 interactions affect Cx43 lateralization within the epicardial border zone, we performed Western blot, immunoprecipitation, and immunolocalization for active c-Src (p-cSrc) post-MI using a canine model of coronary occlusion. We found that post-MI p-cSrc interacts with ZO-1 as Cx43 begins to decrease its interaction with ZO-1 and undergo initial loss of intercalated disk localization. This indicates that the molecular mechanisms by which Cx43 is lost from the intercalated disk following MI includes an interaction of p-cSrc with ZO-1 and subsequent loss of scaffolding of Cx43 leaving Cx43 free to diffuse in myocyte membranes from areas of high Cx43, as at the intercalated disk, to regions of lower Cx43 content, the lateral myocyte membrane. Therefore shifts in Cx43 protein partners may underlie, in part, arrhythmogenesis in the post-MI heart.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pericárdio/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Conexina 43/química , Modelos Animais de Doenças , Cães , Junções Comunicantes/enzimologia , Junções Comunicantes/patologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Domínios PDZ , Pericárdio/enzimologia , Pericárdio/patologia , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas pp60(c-src)/química , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido , Proteína da Zônula de Oclusão-1 , Domínios de Homologia de src
19.
Mol Biol Cell ; 20(11): 2731-43, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369419

RESUMO

The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and beta1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane.


Assuntos
Endocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sítios de Ligação/genética , Membrana Celular/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Mutação , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica , Interferência de RNA , Transfecção , Proteínas de Transporte Vesicular/genética
20.
Cell Commun Adhes ; 15(1): 107-18, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18649183

RESUMO

c-Src can disrupt the connexin 43 (Cx43) and zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. Previously, the authors characterized the interaction of domains from these proteins with the carboxyl terminus of Cx43 (Cx43CT) and found that binding of the c-Src SH3 domain to Cx43CT disrupted the Cx43CT/ZO-1 PDZ-2 domain complex. Because Cx43 and Cx40 form heteromeric connexons and display similar mechanisms of pH regulation, the authors addressed whether Cx40CT interacts with these domains in a similar manner as Cx43CT. Nuclear magnetic resonance (NMR) data indicate that Cx40CT is an intrinsically disordered protein. NMR titrations determined that PDZ-2 affected the last 28 Cx40CT residues and SH3 shifted numerous amino-terminal Cx40CT residues. Finally, the Cx40CT/PDZ-2 complex was unaffected by SH3 and both domains interacted simultaneously with Cx40CT. This result differs from when the same experiment was performed with Cx43CT, suggesting different mechanisms of regulation exist between connexin isoforms, even when involving the same molecular partners.


Assuntos
Conexinas/química , Conexinas/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Sequência de Aminoácidos , Conexinas/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1 , Proteína alfa-5 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA