RESUMO
Breast cancer is the most commonly diagnosed cancer among women worldwide, which is characterized by unregulated cell growth and metastasis. Many bioactive compounds of plant origin such as tangeretin have been shown to possess potent antioxidant and anticancerous properties. In the present study we have investigated the chemotherapeutic effect of tangeretin against 7,12-dimethylbenz(α)anthracene (DMBA)-induced rat mammary carcinogenesis and studied its underlying mechanism of action. Breast cancer was induced by "air pouch technique" with a single dose of 25mg/kg of DMBA. Tangeretin (50 mg/kg) was administered orally for four weeks. Remarkably, tangeretin treatment controlled the growth of cancer cells which was clearly evidenced by morphological and histological analysis. Also, serum levels of estradiol, progesterone and prolactin; lipid bound sialic acid and total sialic acid and the tissue levels of nitric oxide and protein carbonyls of cancer induced animals were decreased upon tangeretin treatment. Staining of breast tissues for nucleolar organizer regions, mast cells, glycoproteins, lipids and collagen showed that tangeretin treatment to breast cancer induced rats significantly reduced tumorigenesis. Oral tangeretin treatment also effectively reduced the tumor cell proliferation markers such as PCNA, COX-2 and Ki-67. Further, tangeretin treatment arrested the cancer cell division at the G1/S phase via p53/p21 up-regulation and inhibited metastasis by suppressing matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor. Taken together, the data provides new evidence on the mechanism of action of tangeretin in breast cancer and hence extends the hypothesis supporting its potential use in chemotherapy.
Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Flavonas/farmacologia , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica/prevenção & controle , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Peso Corporal , Carcinógenos/toxicidade , Feminino , Hormônios Esteroides Gonadais/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Regulação para CimaRESUMO
BACKGROUND: Most of the currently available oral hypoglycemic drugs for the treatment of diabetes mellitus elicit detrimental side effects. Hence, the search for plant-derived products for the treatment of diabetes continues. Gossypin, a pentahydroxy flavone glucoside found in the flowers of Hibiscus vitifolius, has many biological properties, including as an antioxidant, anti-inflammatory and anticancer agent. The aim of the present study was to evaluate the effect of gossypin in streptozotocin (STZ)-induced experimental diabetes in rats. METHODS: Diabetic rats were administered 20 mg/kg per day gossypin orally for 30 days. On the 28th day, rats were subjected to an oral glucose tolerance test. In addition, blood glucose, plasma insulin, hemoglobin, and HbA1c levels were determined, as was the glycogen content of the liver and muscles. Plasma protein and blood urea were also estimated. RESULTS: Oral administration of gossypin to diabetic rats resulted in improved glucose tolerance. Increased blood glucose and HbA1c levels and the reduced plasma insulin and hemoglobin levels in diabetic rats were significantly reversed to near normal after oral administration of gossypin. Furthermore, the glycogen content of the liver and muscles was significantly improved after gossypin treatment of diabetic rats, and plasma protein and blood urea levels were almost normalized. The data obtained in gossypin-treated rats were comparable with those obtained following gliclazide treatment of rats, a standard reference drug for diabetes. CONCLUSIONS: The results of the present study indicate that gossypin has potent antidiabetic activity in STZ-induced experimental diabetes in rats.