Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10407, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710792

RESUMO

Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Ligação Proteica , Proteínas não Estruturais Virais , Zika virus , Chaperona BiP do Retículo Endoplasmático/metabolismo , Zika virus/metabolismo , Zika virus/fisiologia , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Células HEK293 , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Replicação Viral
2.
Brain Res Bull ; 170: 29-38, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556560

RESUMO

Mis-functional ßAPP processing is deemed to be the major phenomenon resulting in increased neuronal cell death, impaired neurogenesis and the loss of synapses, which eventually manifest as the complex symptoms of Alzheimer's disease. Despite of several milestones having been achieved in the field of drug development, the stigma of the disorder as an incurable disease still remains. Some ADAM proteases mediate the physiological non-amyloidogenic α-secretase processing of ßAPP that generates neuroprotective sAPPα production. Earlier studies have also pointed out the role of p53 in Alzheimer's disease neuropathology, although a direct link with metalloprotease activities remains to be established. In this study, we explored the consequences of α-secretase inhibition on p53 status in cultured human neuroblastoma SH-SY5Y cells by means of specific inhibitors of ADAM10 and ADAM17 and the metal chelator and general metalloprotease inhibitor phenanthroline. We establish that, beyond the ability of all inhibitors to affect sAPPα production to varying degrees, phenanthroline specifically and dose-dependently lessened ßAPP expression, a phenomenon that correlated with a strong increase in p53 protein levels and a concomitant decrease of the p53-degrading calpain protease. Furthermore, treatment of cells at concentrations of phenanthroline similar to those inducing increased levels of p53 induced cell cycle arrest leading to apoptosis. Altogether, our results identify new roles of phenanthroline in perturbing ßAPP, p53 and calpain biology, and suggest that the use of this compound and its derivatives as antimicrobial and anti-cancer therapies might trigger Alzheimer's disease pathogenesis.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fenantrolinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia
3.
Sci Rep ; 11(1): 393, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432092

RESUMO

Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Estruturais Virais/metabolismo , Zika virus/metabolismo , Células A549 , Adulto , Idoso , Animais , Células Cultivadas , Chlorocebus aethiops , Culicidae , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Células Vero , Internalização do Vírus , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
4.
Chem Biol Interact ; 319: 109021, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092301

RESUMO

High dietary iron intake is a risk factor for the development of colorectal cancer. However, how iron subsequently impacts the proliferation of colorectal cancer cells remains unclear. This study determined the expression of six iron regulatory genes in twenty-one human colorectal cancer (CRC) biopsies and matched normal colonic tissue. The results show that only hepcidin and ferritin heavy chain expression were increased in CRC biopsies as compared to matched normal tissues. Four established human CRC cell lines, HT-29, HCT-116, SW-620 and SW-480 were subsequently examined for their growth in response to increasing concentrations of iron, and iron depletion. Real time cell growth assay showed a significant inhibitory effect of acute iron loading in HCT-116 cells (IC50 = 258.25 µM at 72 h), and no significant effects in other cell types. However, ten week treatment with iron significantly reduced HT-29 and SW-620 cell growth, whereas no effect was seen in HCT-116 and SW-480 cells. Intracellular labile iron depletion induced the complete growth arrest and detachment of all of the CRC cell types except for the SW-620 cell line which was not affected in its growth. Treatment of starved CRC cells with hepcidin, the major regulator of iron metabolism, induced a significant stimulation of HT-29 cell growth but did not affect the growth of the other cell types. Collectively these results show that iron is central to CRC cell growth in a manner that is not identical between acute and chronic loading, and that is specific to the CRC cell type.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Hepcidinas/farmacologia , Ferro da Dieta/farmacologia , Ferro/farmacologia , Linhagem Celular Tumoral , Células HCT116 , Células HT29 , Humanos
5.
Hematology ; 23(7): 423-428, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29157161

RESUMO

OBJECTIVES: The inherited genetic disorder beta0-thalassemia/Hb E disease is associated with the over-suppression of the master regulator of iron homeostasis, the peptide hormone hepcidin. How developing erythroid cells mediate the suppression of hepcidin remains controversial, although a number of inhibitors have been proposed. METHODS: To investigate the ability of erythroid cells to suppress hepcidin expression in liver cells, conditioned media from the culture of in vitro differentiating erythroblasts (from normal controls and beta0-thalassemia/Hb E patients) was used to treat HepG2 cells, and the effects on hepcidin expression were assayed by real-time quantitative PCR and confocal microscopy. RESULTS: Early activation followed by later suppression of hepcidin expression was seen posttreatment. Markedly, however, no significant differences were observed between suppression of hepcidin as mediated by media from the culture of erythroblasts from normal controls and beta0-thalassemia/Hb E patients Discussion: Previous studies investigating the suppression of hepcidin expression in beta0-thalassemia/Hb E disease have used patient-derived serum samples, which are complex fluids with contributions from multiple cell types. This study has developed a simple in vitro system that allows investigation of how a single cell type mediates hepcidin expression. The results support proposals that over-suppression of hepcidin seen in beta-thalassemia/Hb E patients is a consequence of the increased mass of erythropoiesis and not defects in the signaling process per se. CONCLUSION: The in vitro cell system developed here allows further investigation into the processes mediating erythroid cell suppression of liver hepcidin expression in both normal and pathological states.


Assuntos
Eritroblastos/metabolismo , Regulação da Expressão Gênica , Hemoglobina E/genética , Hepcidinas/genética , Talassemia beta/sangue , Talassemia beta/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Hep G2 , Humanos
6.
Sci Rep ; 7(1): 9194, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835669

RESUMO

Nevirapine (NVP) is a non-nucleoside reverse transcriptase inhibitor frequently used in combination with other antiretroviral agents for highly active antiretroviral therapy (HAART) of patients infected with the human immunodeficiency virus type 1 (HIV-1). However NVP can cause serious, life-threatening complications. Hepatotoxicity is one of the most severe adverse effects, particularly in HIV patients with chronic hepatitis C virus co-infection as these patients can develop liver toxicity after a relatively short course of treatment. However, the mechanism of NVP-associated hepatotoxicity remains unclear. This study sought to investigate the effect of NVP on protein expression in liver cells using a proteomic approach. HepG2 cells were treated or not treated with NVP and proteins were subsequently resolved by two-dimensional gel electrophoresis. A total of 33 differentially regulated proteins were identified, of which nearly 40% (13/33) were mitochondrial proteins. While no obvious differences were observed between NVP treated and untreated cells after staining mitochondria with mitotracker, RT-PCR expression analysis of three mitochondrially encoded genes showed all were significantly up-regulated in NVP treated cells. Mitochondrial dysfunction was observed in response to treatment even with slightly sub-optimal therapeutic treatment concentrations of NVP. This study shows that NVP induces mitochondrial dysregulation in HepG2 cells.


Assuntos
Fármacos Anti-HIV/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nevirapina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Mitocondriais , Células Hep G2 , Humanos , Mitocôndrias/genética , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Proteoma , Proteômica/métodos
7.
Int J Biol Macromol ; 94(Pt A): 728-734, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27765567

RESUMO

Ribosome biogenesis is the process of synthesis of the cellular ribosomes which mediate protein translation. Integral with the ribosomes are four cytoplasmic ribosomal RNAs (rRNAs) which show extensive post-transcriptional modifications including 2'-O-methylation and pseudouridylation. Several hereditary hematologic diseases including Diamond-Blackfan anemia have been shown to be associated with defects in ribosome biogenesis. Thalassemia is the most important hematologic inherited genetic disease worldwide, and this study examined the post-transcriptional ribose methylation status of three specific active sites of the 28S rRNA molecule at positions 1858, 4197 and 4506 of ß-thalassemia trait carriers and normal controls. Samples from whole blood and cultured erythroid cells were examined. Results showed that site 4506 was hypermethylated in ß-thalassemia trait carriers in both cohorts. Expression of fibrillarin, the ribosomal RNA methyltransferase as well as snoRNAs were additionally quantified by RT-qPCR and evidence of dysregulation was seen. Hemoglobin E trait carriers also showed evidence of dysregulation. These results provide the first evidence that ribosome biogenesis is dysregulated in ß-thalassemia trait carriers.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Hemoglobina E/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/metabolismo , Ribossomos/metabolismo , Talassemia beta/metabolismo , Estudos de Casos e Controles , Proteínas Cromossômicas não Histona/genética , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Hemoglobina E/genética , Heterozigoto , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Metilação , Cultura Primária de Células , Biossíntese de Proteínas , RNA Ribossômico 28S/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ribossomos/genética , Uridina Monofosfato/genética , Uridina Monofosfato/metabolismo , Talassemia beta/genética , Talassemia beta/patologia
8.
Asian Pac J Trop Med ; 9(11): 1035-1043, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27890361

RESUMO

Iron deficiency anemia and iron overload conditions affect more than one billion people worldwide. Iron homeostasis involves the regulation of cells that export iron into the plasma and cells that utilize or store iron. The cellular iron balance in humans is primarily mediated by the hepcidin-ferroportin axis. Ferroportin is the sole cellular iron export protein, and its expression is regulated transcriptionally, post-transcriptionally and post-translationally. Hepcidin, a hormone produced by liver cells, post-translationally regulates ferroportin expression on iron exporting cells by binding with ferroportin and promoting its internalization by endocytosis and subsequent degradation by lysosomes. Dysregulation of iron homeostasis leading to iron deposition in vital organs is the main cause of death in beta-thalassemia patients. Beta-thalassemia patients show marked hepcidin suppression, ineffective erythropoiesis, anemia and iron overload. Beta-thalassemia is common in the Mediterranean region, Southeast Asia and the Indian subcontinent, and the focus of this review is to provide an update on the factors mediating hepcidin related iron dysregulation in beta-thalassemia disease. Understanding this process may pave the way for new treatments to ameliorate iron overloading and improve the long term prognosis of these patients.

9.
Virology ; 471-473: 61-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461532

RESUMO

Dengue is the most significant arthropod borne viral disease worldwide, and infection with the dengue virus causes a wide range of symptoms in humans, including bone marrow suppression. While the target cells of the virus remain poorly characterized, cells of the myeloid lineage have been shown to be important mediators of the disease. This study sought to determine whether erythroid precursor cells were susceptible to dengue virus infection, and whether erythroid cells from thalassemia trait carriers showed any protection against infection. Infection with a laboratory adapted high passage DENV-2 resulted in high levels of infection during certain stages of differentiation, and cells derived from thalassemia trait carriers showed significantly reduced susceptibility to dengue virus infection. Infection with low passage isolates resulted in only scattered cells showing evidence of infection, but high bystander apoptosis that was reduced by both a caspase 8 inhibitor and anti-tumor necrosis factor 1 receptor antibodies.


Assuntos
Vírus da Dengue/fisiologia , Células Precursoras Eritroides/virologia , Talassemia/genética , Internalização do Vírus , Adaptação Fisiológica , Animais , Linhagem Celular , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Vírus da Dengue/genética , Humanos , Macaca mulatta , Talassemia/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA