Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Nucl Med ; 65(7): 1087-1094, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844360

RESUMO

Benchtop 99Mo/99mTc and 188W/188Re generators enable economical production of molecular theranostic 99mTc and 188Re radiopharmaceuticals, provided that simple, kit-based chemistry exists to radiolabel targeting vectors with these radionuclides. We have previously described a diphosphine platform that efficiently incorporates 99mTc into receptor-targeted peptides. Here, we report its application to label a prostate-specific membrane antigen (PSMA)-targeted peptide with 99mTc and 188Re for diagnostic imaging and systemic radiotherapy of prostate cancer. Methods: Two diphosphine-dipeptide bioconjugates, DP1-PSMAt and DP2-PSMAt, were formulated into kits for radiolabeling with 99mTc and 188Re. The resulting radiotracers were studied in vitro, in prostate cancer cells, and in vivo in mouse xenograft models, to assess similarity of uptake and biodistribution for each 99mTc/188Re pair of agents. Results: Both DP1-PSMAt and DP2-PSMAt could be efficiently radiolabeled with 99mTc and 188Re using kit-based methods to furnish the isostructural compounds M-DP1-PSMAt and M-DP2-PSMAt (M = [99mTc]Tc, [188Re]Re). All 99mTc/188Re radiotracers demonstrated specific uptake in PSMA-expressing prostate cancer cells, with negligible uptake in prostate cancer cells that did not express PSMA or in which PSMA uptake was blocked. M-DP1-PSMAt and M-DP2-PSMAt also exhibited high tumor uptake (18-30 percentage injected dose per gram at 2 h after injection), low retention in nontarget organs, fast blood clearance, and excretion predominantly via a renal pathway. Importantly, each pair of 99mTc/188Re radiotracers showed near-identical biologic behavior in these experiments. Conclusion: We have prepared and developed novel pairs of isostructural PSMA-targeting 99mTc/188Re theranostic agents. These generator-based theranostic agents have potential to provide access to the benefits of PSMA-targeted diagnostic imaging and systemic radiotherapy in health care settings that do not routinely have access to either reactor-produced 177Lu radiopharmaceuticals or PET/CT infrastructure.


Assuntos
Neoplasias da Próstata , Radioisótopos , Rênio , Tecnécio , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Camundongos , Rênio/química , Animais , Humanos , Tecnécio/química , Radioisótopos/química , Linhagem Celular Tumoral , Distribuição Tecidual , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Nanomedicina Teranóstica , Peptídeos/química , Medicina de Precisão
2.
Nucl Med Commun ; 45(6): 465-473, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38465420

RESUMO

Targeted alpha therapy (TAT) is a promising form of oncology treatment utilising alpha-emitting radionuclides that can specifically accumulate at disease sites. The high energy and high linear energy transfer associated with alpha emissions causes localised damage at target sites whilst minimising that to surrounding healthy tissue. The lack of appropriate radionuclides has inhibited research in TAT. The identification of appropriate radionuclides should be primarily a function of the radionuclide's nuclear decay properties, and not their biochemistry or economic factors since these last two factors can change; however, the nuclear decay properties are fixed to that nuclide. This study has defined and applied a criterion based on nuclear decay properties useful for TAT. This down-selection exercise concluded that the most appropriate radionuclides are: 149 Tb, 211 At/ 211 Po, 212 Pb/ 212 Bi/ 212 Po, 213 Bi/ 213 Po, 224 Ra, 225 Ra/ 225 Ac/ 221 Fr, 226 Ac/ 226 Th, 227 Th/ 223 Ra/ 219 Rn, 229 U, 230 U/ 226 Th, and 253 Fm, the majority of which have previously been considered for TAT. 229 U and 253 Fm have been newly identified and could become new radionuclides of interest for TAT, depending on their decay chain progeny.


Assuntos
Partículas alfa , Radioisótopos , Partículas alfa/uso terapêutico , Radioisótopos/uso terapêutico , Humanos , Radioquímica
3.
J Control Release ; 357: 606-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061195

RESUMO

Intranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques. AuNRs were functionalized with a fluorescent dye (Cyanine5, Cy5) or a metal chelator (diethylenetriaminepentaacetic dianhydride, DTPA anhydride) to complex with Indium-111 via a PEG spacer for optical and nuclear imaging, respectively. Direct quantification of gold was achieved by inductively coupled plasma mass spectrometry. Rapid AuNRs uptake in mice brains was observed within 10 min following intranasal administration which gradually reduced over time. This was confirmed by the 3 imaging/analytical techniques. Autoradiography of sagittal brain sections suggested entry to the brain via the olfactory bulb followed by diffusion to other brain regions within 1 h of administration. The presence of AuNR in glioblastoma (GBM) tumors following intranasal administration was also proven which opens doors for AuNRs applications, as nose-to-brain drug delivery carriers, for treatment of a range of CNS diseases.


Assuntos
Glioblastoma , Nanotubos , Camundongos , Animais , Administração Intranasal , Ouro/química , Encéfalo , Nanotubos/química
4.
EBioMedicine ; 79: 103974, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430453

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a progressive degenerative disorder that leads to joint destruction. Available treatments only target the inflammatory component with minimal impact on joint repair. We recently uncovered a previously unappreciated family of pro-resolving mediators, the maresin conjugate in tissue regeneration (MCTR), that display both immunoregulatory and tissue-protective activities. Thus, we queried whether the production of these autacoids is disrupted in RA patients and whether they can be useful in treating joint inflammation and promoting joint repair. METHODS: Using a highly phenotyped RA cohort we evaluated plasma MCTR concentrations and correlated these to clinical markers of disease activity. To evaluate the immunoregulatory and tissue reparative activities we employed both in vivo models of arthritis and organ culture models. FINDINGS: Herein, we observed that plasma MCTR3 concentrations were negatively correlated with joint disease activity and severity in RA patients. Evaluation of the mechanisms engaged by this mediator in arthritic mice demonstrated that MCTR3 reprograms monocytes to confer enduring joint protective properties. Single cell transcriptomic profiling and flow cytometric evaluation of macrophages from mice treated with MCTR3-reprogrammed monocytes revealed a role for Arginase-1 (Arg-1) in mediating their joint reparative and pro-resolving activities. Arg-1 inhibition reversed both the anti-arthritic and tissue reparative actions of MCTR3-reprogrammed monocytes. INTERPRETATION: Our findings demonstrate that circulating MCTR3 levels are negatively correlated with disease in RA. When administered to mice in vivo, MCTR3 displayed both anti-inflammatory and joint reparative activities, protecting both cartilage and bone in murine arthritis. These activities were, at least in part, mediated via the reprogramming of mononuclear phagocyte responses. FUNDING: This work was supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z).


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Anti-Inflamatórios/farmacologia , Arginase/genética , Artrite Reumatoide/tratamento farmacológico , Humanos , Macrófagos , Camundongos , Monócitos
5.
Bioorg Med Chem Lett ; 37: 127840, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556570

RESUMO

The transmetalation reaction between zinc dithiocarbamates functionalized with organic groups and the cation fac-[99mTc(H2O)3(CO)3]+ has been studied as a new strategy to bind biomolecules to this radionuclide for preparing radiopharmaceuticals with high molar activity. All complexes were obtained in high yields by heating at moderate temperatures and without subsequent purification. The chemical identity was ascertained by HPLC comparison with the homologous rhenium complexes. Stability studies in cysteine solution and serum have shown a good stability of the coordination set fac-[99mTc(CO)3(SS)(P)]. Preliminary biological studies of the radiocomplex functionalized with D-(+)-glucosamine with carcinoma cells have been performed.


Assuntos
Complexos de Coordenação/química , Compostos Radiofarmacêuticos/química , Tecnécio/farmacocinética , Zinco/química , Animais , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/farmacocinética , Camundongos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tecnécio/administração & dosagem , Tecnécio/química , Distribuição Tecidual , Zinco/administração & dosagem , Zinco/farmacocinética
6.
Nanotheranostics ; 4(2): 71-82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190534

RESUMO

Vγ9Vδ2 T cell immunotherapy has been shown to be effective in delaying tumour growth in both pre-clinical and clinical studies. It has been pointed out the importance of the ability of cells to accumulate within tumours and the association with therapeutic efficacy in clinical studies of adoptive T cell transfer. We have previously reported that alendronate liposomes (L-ALD) increase the efficacy of this therapy after localised or systemic injection of γδ T cells in mice, inoculated with ovarian, melanoma, pancreatic or experimental lung metastasis tumour models, respectively. This study aimed to examine the organ biodistribution and tumour uptake of human γδ T cells in subcutaneous (SC), intraperitoneal (IP) or experimental metastatic lung tumours, established in NOD-SCID gamma (NSG) mice using the melanoma cell line A375Pß6.luc. pre-injected with L-ALD. Overall, small variations in blood profiles and organ biodistribution of γδ T cells among the different tumour models were observed. Exceptionally, IP-tumour and experimental metastatic lung-tumour bearing mice pre-injected with L-ALD showed a significant decrease in liver accumulation, and highest uptake of γδ T cells in lungs and tumour-bearing lungs, respectively. Lower γδ T cell count was found in the SC and IP tumours.


Assuntos
Alendronato , Imunoterapia Adotiva/métodos , Linfócitos Intraepiteliais , Lipossomos , Alendronato/administração & dosagem , Alendronato/farmacocinética , Animais , Células Cultivadas , Humanos , Linfócitos Intraepiteliais/citologia , Linfócitos Intraepiteliais/metabolismo , Lipossomos/administração & dosagem , Lipossomos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Distribuição Tecidual
7.
Nat Commun ; 11(1): 1290, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157087

RESUMO

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.


Assuntos
Fibroblastos Associados a Câncer/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Feminino , Glicólise , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfoproteínas/metabolismo , Células Estromais/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Am Chem Soc ; 142(3): 1180-1185, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31913613

RESUMO

18F labeling strategies for unmodified peptides with [18F]fluoride require 18F-labeled prosthetics for bioconjugation more often with cysteine thiols or lysine amines. Here we explore selective radical chemistry to target aromatic residues applying C-H 18F-trifluoromethylation. We report a one-step route to [18F]CF3SO2NH4 from [18F]fluoride and its application to direct [18F]CF3 incorporation at tryptophan or tyrosine residues using unmodified peptides as complex as recombinant human insulin. The fully automated radiosynthesis of octreotide[Trp(2-CF218F)] enables in vivo positron emission tomography imaging.


Assuntos
Clorofluorcarbonetos de Metano/química , Radioisótopos de Flúor/química , Peptídeos/química , Compostos de Enxofre/química , Metilação , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química
9.
ACS Nano ; 14(1): 129-141, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31742990

RESUMO

Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (152Sm), which can then be activated on demand to their "hot" radioactive form (153Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11.37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy.


Assuntos
Carbono/química , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Nanocápsulas/química , Nêutrons , Samário/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Propriedades de Superfície
10.
Sci Rep ; 9(1): 12840, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492884

RESUMO

Early phase clinical trials have demonstrated good therapeutic index for oncolytic adenoviruses in patients with solid tumours when administered intratumorally, resulting in local tumour elimination. Entrapment and binding of adenovirus to erythrocytes, blood factors, and neutralising antibodies have prevented efficient systemic delivery and targeting of distant lesions in the clinic. We previously generated the novel replication-selective Ad-3∆-A20T to improve tumour targeting by increasing the viral dose at distant sites. Here, we developed a protocol to directly radiolabel the virus for rapid and sensitive detection by single-photon emitted computed tomography (SPECT/CT) providing a convenient method for determining biodistribution following intravenous administration in murine models. Longitudinal whole-body scans, demonstrated efficient viral uptake in pancreatic Suit-2 and Panc04.03 xenografts with trace amounts of 125I-Ad-3∆-A20T up to 48 h after tail vein delivery. Hepatic and splenic radioactivity decreased over time. Analysis of tissues harvested at the end of the study, confirmed potency and selectivity of mutant viruses. Ad-3∆-A20T-treated animals showed higher viral genome copy numbers and E1A gene expression in tumors than in liver and spleen compared to Ad5wt. Our direct radiolabeling approach, allows for immediate screening of novel oncolytic adenoviruses and selection of optimal viral genome alterations to generate improved mutants.


Assuntos
Adenoviridae/genética , Radioisótopos do Iodo/administração & dosagem , Mutação/genética , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas E1A de Adenovirus/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Genoma Viral , Humanos , Integrinas/metabolismo , Fígado/diagnóstico por imagem , Camundongos Nus , Baço/diagnóstico por imagem , Distribuição Tecidual
11.
Oncotarget ; 10(42): 4276-4289, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31303962

RESUMO

Anterior gradient 2 (AGR2), a protein disulfide isomerase, shows two subcellular localizations: intracellular (iAGR2) and extracellular (eAGR2). In healthy cells that express AGR2, the predominant form is iAGR2, which resides in the endoplasmic reticulum. In contrast, cancer cells secrete and express eAGR2 on the cell surface. We wanted to test if AGR2 is a cancer-specific tumor-associated antigen. We utilized two AGR2 antibodies, P3A5 and P1G4, for in vivo tumor localization and tumor growth inhibition. The monoclonal antibodies recognized both human AGR2 and mouse Agr2. Biodistribution experiments using a syngeneic mouse model showed high uptake of P3A5 AGR2 antibody in xenografted eAgr2+ pancreatic tumors, with limited uptake in normal tissues. In implanted human patient-derived eAGR2+ pancreatic cancer xenografts, tumor growth inhibition was evaluated with antibodies and Gemcitabine (Gem). Inhibition was more potent by P1G4 + Gem combination than Gem alone or P3A5 + Gem. We converted these two antibodies to human:mouse chimeric forms: the constructed P3A5 and P1G4 chimeric mVLhCκ and mVHhCγ (γ1, γ2, γ4) genes were inserted in a single mammalian expression plasmid vector, and transfected into human 293F cells. Expressed human:mouse chimeric IgG1, IgG2 and IgG4 antibodies retained AGR2 binding. Increase in IgG yield by transfected cells could be obtained with serial transfection of vectors with different drug resistance. These chimeric antibodies, when incubated with human blood, effectively lysed eAGR2+ PC3 prostate cancer cells. We have, thus, produced humanized anti-AGR2 antibodies that, after further testing, might be suitable for treatment against a variety of eAGR2+ solid tumors.

12.
Theranostics ; 9(6): 1666-1682, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037130

RESUMO

Extracellular vesicles, in particular exosomes, have recently gained interest as novel drug delivery vectors due to their biological origin and inherent intercellular biomolecule delivery capability. An in-depth knowledge of their in vivo biodistribution is therefore essential. This work aimed to develop a novel, reliable and universal method to radiolabel exosomes to study their in vivo biodistribution. Methods: Melanoma (B16F10) cells were cultured in bioreactor flasks to increase exosome yield. B16F10-derived exosomes (ExoB16) were isolated using ultracentrfugation onto a single sucrose cushion, and were characterised for size, yield, purity, exosomal markers and morphology using Nanoparticle Tracking Analysis (NTA), protein measurements, flow cytometry and electron microscopy. ExoB16 were radiolabelled using 2 different approaches - intraluminal labelling (entrapment of 111Indium via tropolone shuttling); and membrane labelling (chelation of 111Indium via covalently attached bifunctional chelator DTPA-anhydride). Labelling efficiency and stability was assessed using gel filtration and thin layer chromatography. Melanoma-bearing immunocompetent (C57BL/6) and immunodeficient (NSG) mice were injected intravenously with radiolabelled ExoB16 (1x1011 particles/mouse) followed by metabolic cages study, whole body SPECT-CT imaging and ex vivo gamma counting at 1, 4 and 24 h post-injection. Results: Membrane-labelled ExoB16 showed superior radiolabelling efficiency and radiochemical stability (19.2 ± 4.53 % and 80.4 ± 1.6 % respectively) compared to the intraluminal-labelled exosomes (4.73 ± 0.39 % and 14.21 ± 2.76 % respectively). Using the membrane-labelling approach, the in vivo biodistribution of ExoB16 in melanoma-bearing C57Bl/6 mice was carried out, and was found to accumulate primarily in the liver and spleen (~56% and ~38% ID/gT respectively), followed by the kidneys (~3% ID/gT). ExoB16 showed minimal tumour i.e. self-tissue accumulation (~0.7% ID/gT). The membrane-labelling approach was also used to study ExoB16 biodistribution in melanoma-bearing immunocompromised (NSG) mice, to compare with that in the immunocompetent C57Bl/6 mice. Similar biodistribution profile was observed in both C57BL/6 and NSG mice, where prominent accumulation was seen in liver and spleen, apart from the significantly lower tumour accumulation observed in the NSG mice (~0.3% ID/gT). Conclusion: Membrane radiolabelling of exosomes is a reliable approach that allows for accurate live imaging and quantitative biodistribution studies to be performed on potentially all exosome types without engineering parent cells.


Assuntos
Membrana Celular/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Exossomos/química , Marcação por Isótopo/métodos , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Camundongos Endogâmicos C57BL , Distribuição Tecidual
13.
J Nucl Med ; 60(6): 730-735, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979822

RESUMO

Cancer immunotherapy is now established as a central therapeutic pillar in hematologic oncology. Cell-based therapies, with or without genetic modification ex vivo, have reached the clinic as the standard of care in limited indications and remain the subject of intense preclinical and translational development. Expanding on this, related therapeutic approaches are in development for solid-tumor and nonmalignant indications, broadening the scope of this technology. It has long been recognized that in vivo tracking of infused cellular therapies would provide unique opportunities to optimize their efficacy and aid in the assessment and management of toxicity. Recently, we have witnessed the introduction of novel tracers for passive labeling of cell products and advances in the introduction and use of reporter genes to enable longitudinal imaging. This review highlights the key developments over the last 5 y.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Imagem Molecular/métodos , Animais , Humanos , Marcação por Isótopo , Nanopartículas
14.
J Nucl Med ; 60(7): 1010-1016, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530828

RESUMO

Molecular imaging and targeted radiotherapy with radiolabeled cholecystokinin-2 receptor (CCK2R) targeting peptide probes holds high promise to improve the clinical management of patients with metastatic medullary thyroid carcinoma and other CCK2R-expressing malignancies. Low stability and suboptimal targeting of currently available radiolabeled peptide analogs has prompted us to seek new stabilization strategies. In this study, we present a new minigastrin analog with site-specific C-terminal modifications showing a highly optimized targeting profile. Methods: DOTA-D-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2 (DOTA-MGS5) radiolabeled with 111In, 68Ga, and 177Lu was evaluated in extensive in vitro stability studies. For 177Lu-DOTA-MGS5, additional metabolic studies were performed on BALB/c mice. Receptor affinity and cell uptake were studied in A431 human epidermoid carcinoma cells transfected with human CCK2R (A431-CCK2R), as well as the same cell line transfected with the empty vector (A431-mock). A431-CCK2R/A431-mock xenografted athymic BALB/c nude mice were used for biodistribution studies and small-animal SPECT/CT. Results: DOTA-MGS5 radiolabeled with 111In and 177Lu showed a highly increased stability against enzymatic degradation in different media up to 24 h of incubation. Similar results were observed for 68Ga-DOTA-MGS5 incubated up to 4 h. In the blood of mice injected with 177Lu-DOTA-MGS5, at least 70% intact radiopeptide was detected up to 1 h after injection. The unlabeled peptide and the complexes with the natural isotopes showed retained receptor affinity, and the radiopeptides showed unexpectedly high cell uptake in A431-CCK2R cells (>60% at 4 h). Regardless of the radiometal used for labeling, impressively high uptake in A431-CCK2R xenografts was found (∼20% injected activity/g 1-4 h after injection), whereas the uptake in A431-mock xenografts was negligible. Low background activity and favorable tumor-to-kidney ratios (4-6) allowed for high image contrast in small-animal SPECT/CT. Conclusion: The excellent targeting properties of DOTA-MGS5 support future clinical studies evaluating the diagnostic and therapeutic potential in patients with progressive or metastatic medullary thyroid carcinoma, as well as other advanced-stage CCK2R-expressing malignancies.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Imagem Molecular/métodos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Radioterapia/métodos , Receptor de Colecistocinina B/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Camundongos , Oligopeptídeos/farmacocinética , Oligopeptídeos/uso terapêutico , Distribuição Tecidual
15.
Theranostics ; 8(11): 2896-2908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896292

RESUMO

Minigastrin (MG) analogs show high affinity to the cholecystokinin-2 receptor (CCK2R) and have therefore been intensively studied to find a suitable analog for imaging and treatment of CCK2R-expressing tumors. The clinical translation of the radioligands developed thus far has been hampered by high kidney uptake or low enzymatic stability. In this study, we aimed to develop new MG analogs with improved targeting properties stabilized against degradation through site-specific amino acid modifications. Method: Based on the lead structure of a truncated MG analog, four new MG derivatives with substitutions in the C-terminal part of the peptide (Trp-Met-Asp-Phe-NH2) were synthesized and derivatized with DOTA at the N-terminus for radiolabeling with trivalent radiometals. The in vitro properties of the new analogs were characterized by analyzing the lipophilicity, the protein binding, and the stability of the Indium-111 (111In)-labeled analogs in different media. Two different cell lines, AR42J cells physiologically expressing the rat CCK2R and A431 cells transfected with human CCK2R (A431-CCK2R), were used to study the receptor affinity and cell uptake. For the two most promising MG analogs, metabolic studies in normal BALB/c mice were carried out as well as biodistribution and imaging studies in tumor xenografted athymic BALB/c nude mice. Results: Two out of four synthesized peptide analogs (DOTA-MGS1 and DOTA-MGS4) showed retained receptor affinity and cell uptake when radiolabeled with 111In. These two peptide analogs, however, showed a different stability against enzymatic degradation in vitro and in vivo. When injected to normal BALB/c mice, for 111In-DOTA-MGS1 at 10 min post injection (p.i.) no intact radiopeptide was found in the blood, whereas for 111In-DOTA-MGS4 more than 75% was still intact. 111In-DOTA-MGS4 showed a clear increase in injected activity per gram tissue (IA/g) for A431-CCK2R xenografts (10.40±2.21% IA/g 4 h p.i.) when compared to 111In-DOTA-MGS1 (1.23±0.15% IA/g 4 h p.i.). The tumor uptake of 111In-DOTA-MGS4 was also combined with a low uptake in stomach and kidney leading to high-contrast NanoSPECT/CT images. Conclusion: Of the four new MG analogs developed, the best results in terms of enzymatic stability and increased tumor targeting were obtained with 111In-DOTA-MGS4 showing two substitutions with N-methylated amino acids. 111In-DOTA-MGS4 was also superior to other MG analogs reported thus far and seems therefore an extremely promising targeting molecule for theranostic use with alternative radiometals.


Assuntos
Gastrinas/química , Neoplasias/diagnóstico por imagem , Peptídeos/química , Receptor de Colecistocinina B/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Gastrinas/metabolismo , Gastrinas/farmacocinética , Humanos , Radioisótopos de Índio , Marcação por Isótopo , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular , Neoplasias/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacocinética , Ligação Proteica , Estabilidade Proteica , Ratos , Distribuição Tecidual
16.
J Nucl Med ; 59(8): 1234-1242, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674421

RESUMO

We have developed the 16F12 mouse monoclonal antibody (mAb), which targets the Müllerian-inhibiting substance receptor, type II (MISRII), expressed by ovarian tumors. Here, we assessed in preclinical models the possibility of using radiolabeled 16F12 in a theranostic approach for small-volume ovarian peritoneal carcinomatosis, such as after cytoreductive surgery. Methods: DOTA-, DTPA- or deferoxamine mesylate-conjugated 16F12 mAb was radiolabeled with ß-particle (177Lu) or α-particle (213Bi) emitters for therapeutic use and with 89Zr for PET imaging. On the 13th postxenograft day, mice bearing intraperitoneal MISRII-positive AN3CA endometrial carcinoma cell xenografts were treated by conventional intraperitoneal radioimmunotherapy (IP-RIT) with 10 MBq of 177Lu-16F12 or 12.9 MBq of 213Bi-16F12 or by brief intraperitoneal radioimmunotherapy (BIP-RIT) using 50 MBq of 177Lu-16F12 or 37 MBq of 213Bi-16F12. For BIP-RIT, 30 min after injection of the radiolabeled mAbs, the peritoneal cavity was washed to remove the unbound radioactivity. The biodistribution of 177Lu- and 213Bi-16F12 mAbs was determined and then used for dose assessment. Hematologic toxicity was also monitored. Results: The 16F12 mAb was satisfactorily radiolabeled for both therapy and imaging. IP-RIT with 177Lu-16F12 was slightly more efficient in delaying tumor growth than IP-RIT with 213Bi-16F12. Conversely, 213Bi-16F12 was more efficient than 177Lu-16F12 in BIP-RIT. The biodistribution analysis showed that the tumor-to-blood uptake ratio was significantly higher with BIP-RIT than with IP-RIT for both 213Bi- and 177Lu-16F12. Hematologic toxicity was more pronounced with 177Lu-16F12 than with 213Bi-16F12. SPECT/CT images (after BIP-RIT with 177Lu-16F12) and PET/CT images (after injection of 89Zr-16F12 in the tail vein) showed focal uptake at the tumor site. Conclusion: Radiolabeled 16F12 could represent a new theranostic tool for small-volume ovarian peritoneal carcinomatosis. Specifically, 213Bi-16F12-based BIP-RIT could be proposed to selected patients as an alternative adjuvant treatment immediately after cytoreductive surgery. An anti-MISRII mAb is currently being used in a first-in-human study, thus making radiolabeled anti-MISRII mAbs a realistic theranostic option for the clinic.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/radioterapia , Receptores de Peptídeos/imunologia , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Desferroxamina/química , Feminino , Compostos Heterocíclicos com 1 Anel/química , Humanos , Marcação por Isótopo , Camundongos , Neoplasias Ovarianas/metabolismo , Ácido Pentético/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioquímica , Distribuição Tecidual
17.
Nat Commun ; 9(1): 1081, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540684

RESUMO

The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancy has established a new therapeutic pillar of hematology-oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field.


Assuntos
Antígenos CD19/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos CD19/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Imunoterapia , Masculino , Camundongos , Camundongos SCID , Receptores de Antígenos de Linfócitos T/genética , Simportadores/genética , Simportadores/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Nanotheranostics ; 1(1): 59-79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29071179

RESUMO

Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.

19.
J Control Release ; 256: 141-152, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28432037

RESUMO

The αvß6 integrin receptor has been shown to be overexpressed on many types of cancer cells, resulting in a more pro-invasive and aggressive phenotype, this makes it an attractive target for selective drug delivery. In tumours that over-express the αvß6 receptor, cellular uptake of liposomes can be enhanced using ligand-targeted liposomes. It has previously been shown in both in vitro and in vivo studies that liposomal alendronate (L-ALD) can sensitise cancer cells to destruction by Vγ9Vδ2 T cells. It is hypothesised that by using the αvß6-specific peptide A20FMDV2 as a targeting moiety for L-ALD, the therapeutic efficacy of this therapy can be increased in αvß6 positive tumours. Targeted liposomes (t-L) were formulated and the targeting efficacy of targeted liposomes (t-L) was assessed by cell uptake and cytotoxicity studies in the αvß6 positive cells line A375Pß6. Bio-distribution of both L and t-L were carried out in αvß6 positive (A375Pß6 and PANC0403) and αvß6 negative (A375Ppuro and PANC-1) subcutaneous tumour mouse models. Immuno-compromised mice bearing A375Pß6 experimental metastatic lung tumours were treated with L-ALD or t-L-ALD as monotherapies or in combination with ex vivo-expanded Vγ9Vδ2 T cells. In vitro, αvß6-dependant uptake of t-L was observed, with t-L-ALD being more effective than L-ALD at sensitising A375Pß6 to γδ T cells. Interestingly, t-L-ALD led to slightly higher but not significant reduction in tumour growth compared to L-ALD, when used as monotherapy in vivo. Moreover, both L-ALD and t-L-ALD led to significant reductions in tumour growth when used in combination with γδ T cells in vivo but t-L-ALD offered no added advantage compared to L-ALD.


Assuntos
Alendronato/administração & dosagem , Antígenos de Neoplasias/imunologia , Imunoterapia , Integrinas/imunologia , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Alendronato/farmacocinética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Lipossomos , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Carga Tumoral
20.
EJNMMI Res ; 7(1): 33, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28389883

RESUMO

BACKGROUND: Preclinical single-photon emission computed tomography (SPECT)/CT imaging studies are hampered by low throughput, hence are found typically within small volume feasibility studies. Here, imaging and image analysis procedures are presented that allow profiling of a large volume of radiolabelled compounds within a reasonably short total study time. Particular emphasis was put on quality control (QC) and on fast and unbiased image analysis. METHODS: 2-3 His-tagged proteins were simultaneously radiolabelled by 99mTc-tricarbonyl methodology and injected intravenously (20 nmol/kg; 100 MBq; n = 3) into patient-derived xenograft (PDX) mouse models. Whole-body SPECT/CT images of 3 mice simultaneously were acquired 1, 4, and 24 h post-injection, extended to 48 h and/or by 0-2 h dynamic SPECT for pre-selected compounds. Organ uptake was quantified by automated multi-atlas and manual segmentations. Data were plotted automatically, quality controlled and stored on a collaborative image management platform. Ex vivo uptake data were collected semi-automatically and analysis performed as for imaging data. RESULTS: >500 single animal SPECT images were acquired for 25 proteins over 5 weeks, eventually generating >3500 ROI and >1000 items of tissue data. SPECT/CT images clearly visualized uptake in tumour and other tissues even at 48 h post-injection. Intersubject uptake variability was typically 13% (coefficient of variation, COV). Imaging results correlated well with ex vivo data. CONCLUSIONS: The large data set of tumour, background and systemic uptake/clearance data from 75 mice for 25 compounds allows identification of compounds of interest. The number of animals required was reduced considerably by longitudinal imaging compared to dissection experiments. All experimental work and analyses were accomplished within 3 months expected to be compatible with drug development programmes. QC along all workflow steps, blinding of the imaging contract research organization to compound properties and automation provide confidence in the data set. Additional ex vivo data were useful as a control but could be omitted from future studies in the same centre. For even larger compound libraries, radiolabelling could be expedited and the number of imaging time points adapted to increase weekly throughput. Multi-atlas segmentation could be expanded via SPECT/MRI; however, this would require an MRI-compatible mouse hotel. Finally, analysis of nuclear images of radiopharmaceuticals in clinical trials may benefit from the automated analysis procedures developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA