Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(5): 533-544, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526463

RESUMO

The activity of PP2A (protein phosphatase 2A), a serine-threonine phosphatase, is reduced by chronic cigarette smoke (SM) exposure and α-1 antitrypsin (AAT) deficiency, and chemical activation of PP2A reduces the loss of lung function in SM-exposed mice. However, the previously studied PP2A-activator tricyclic sulfonamide compound DBK-1154 has low stability to oxidative metabolism, resulting in fast clearance and low systemic exposure. Here we compare the utility of a new more stable PP2A activator, ATUX-792, versus DBK-1154 for the treatment of SM-induced emphysema. ATUX-792 was also tested in human bronchial epithelial cells and a mouse model of AAT deficiency, Serpina1a-e-knockout mice. Human bronchial epithelial cells were treated with ATUX-792 or DBK-1154, and cell viability, PP2A activity, and MAP (mitogen-activated protein) kinase phosphorylation status were examined. Wild-type mice received vehicle, DBK-1154, or ATUX-792 orally in the last 2 months of 4 months of SM exposure, and 8-month-old Serpina1a-e-knockout mice received ATUX-792 daily for 4 months. Forced oscillation and expiratory measurements and histology analysis were performed. Treatment with ATUX-792 or DBK-1154 resulted in PP2A activation, reduced MAP kinase phosphorylation, immune cell infiltration, reduced airspace enlargements, and preserved lung function. Using protein arrays and multiplex assays, PP2A activation was observed to reduce AAT-deficient and SM-induced release of CXCL5, CCL17, and CXCL16 into the airways, which coincided with reduced neutrophil lung infiltration. Our study indicates that suppression of the PP2A activity in two models of emphysema could be restored by next-generation PP2A activators to impact lung function.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Animais , Camundongos , Lactente , Proteína Fosfatase 2/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Pulmão/metabolismo , Enfisema/tratamento farmacológico , Enfisema/metabolismo , Camundongos Knockout
2.
Ann Thorac Med ; 18(1): 1-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968330

RESUMO

In the summer of 2019, a cluster of cases were observed with users of battery-operated or superheating devices presenting with multiple symptoms, such as dyspnea, cough, fever, constitutional symptoms, gastrointestinal upset, and hemoptysis, that is now termed e-cigarette, or vaping, product use-associated lung injury (EVALI). The Centers for Disease Control and Prevention reported 2807 cases within the USA leading to at least 68 deaths as of February 18, 2020. The heterogeneous presentations of EVALI make diagnosis and treatment difficult; however, treatment focused on identifying and removal of the noxious substance and providing supportive care. Vitamin E acetate (VEA) is a likely cause of this lung injury, and others have reported other components to play a possible role, such as nicotine and vegetable glycerin/propylene glycol. EVALI is usually observed in adolescents, with a history of vaping product usage within 90 days typically containing tetrahydrocannabinol, and presenting on chest radiograph with pulmonary infiltrates or computed tomography scan with ground-glass opacities. Diagnosis requires a high degree of suspicion to diagnose and exclusion of other possible causes of lung disease. Here, we review the current literature to detail the major factors contributing to EVALI and primarily discuss the potential role of VEA in EVALI. We will also briefly discuss other constituents other than just VEA, as a small number of EVALI cases are reported without the detection of VEA, but with the same clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA