Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 733, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286991

RESUMO

Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.


Assuntos
Arabidopsis , Lotus , Humanos , Nódulos Radiculares de Plantas/metabolismo , Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Fixação de Nitrogênio/fisiologia , Simbiose/fisiologia , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035165

RESUMO

Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such "end" products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.


Assuntos
Adaptação Fisiológica , Arabidopsis/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Enxofre/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulases/metabolismo
3.
Sci Rep ; 9(1): 9369, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249317

RESUMO

Leaf development in plants, including dorsoventral (adaxial-abaxial) patterning, is tightly regulated. The involvement of several subunits of the 26S proteasome in adaxial-abaxial polarity establishment has been reported. In the present study, we revealed that in Arabidopsis thaliana, a mutation in RPT5A, a subunit of 26S proteasome, causes abnormally narrow true leaves under zinc deficiency. mRNA accumulations of DNA damage marker genes in leaves were elevated by zinc deficiency. PARP2, a single-strand break (SSB) inducible gene, was more strongly induced by zinc deficiency in rpt5a mutants compared with the wild type. A comet assay indicated that SSB is enhanced in mutants grown under the zinc deficiency condition. These results suggest that SSB accumulation is accompanied by abnormal leaf development. To test if DNA damage is a sole cause of abnormal leaf development, we treated the wild type grown under normal zinc conditions with zeocin, a DNA damage-inducing reagent, and found that narrow leaves developed, suggesting that DNA damage is sufficient to induce the development of abnormally narrow leaves. Taken together with the observation of the abnormal leaf morphology of our mutant plant under zinc deficiency, we demonstrated that the alleviation of DNA damage is important for normal leaf development.


Assuntos
Adenosina Trifosfatases/genética , Dano ao DNA , Genes de Plantas , Mutação , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Zinco/deficiência , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta/citologia
4.
Nat Commun ; 9(1): 5285, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538237

RESUMO

High levels of boron (B) induce DNA double-strand breaks (DSBs) in eukaryotes, including plants. Here we show a molecular pathway of high B-induced DSBs by characterizing Arabidopsis thaliana hypersensitive to excess boron mutants. Molecular analysis of the mutants revealed that degradation of a SWItch/Sucrose Non-Fermentable subunit, BRAHMA (BRM), by a 26S proteasome (26SP) with specific subunits is a key process for ameliorating high-B-induced DSBs. We also found that high-B treatment induces histone hyperacetylation, which increases susceptibility to DSBs. BRM binds to acetylated histone residues and opens chromatin. Accordingly, we propose that the 26SP limits chromatin opening by BRM in conjunction with histone hyperacetylation to maintain chromatin stability and avoid DSB formation under high-B conditions. Interestingly, a positive correlation between the extent of histone acetylation and DSB formation is evident in human cultured cells, suggesting that the mechanism of DSB induction is also valid in animals.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Boro/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Proteólise
5.
J Exp Bot ; 66(13): 3657-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25908239

RESUMO

To increase our understanding of the adaptation for copper (Cu) deficiency, Arabidopsis mutants with apparent alterations under Cu deficiency were identified. In this report, a novel mutant, tpst-2, was found to be more sensitive than wild-type (Col-0) plants to Cu deficiency during root elongation. The positional cloning of tpst-2 revealed that this gene encodes a tyrosylprotein sulfotransferase (TPST). Moreover, the ethylene production of tpst-2 mutant was higher than that of Col-0 under Cu deficiency, and adding the ethylene response inhibitor AgNO3 partially rescued defects in root elongation. Interestingly, peptide hormone phytosulfokine (PSK) treatment also repressed the ethylene production of tpst-2 mutant plants. Our results revealed that TPST suppressed ethylene production through the action of PSK.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cobre/farmacologia , Etilenos/biossíntese , Mutação/genética , Compostos Fitoquímicos/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Homeostase/efeitos dos fármacos , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Splicing de RNA/genética , Receptores de Superfície Celular/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Nitrato de Prata/farmacologia , Sulfotransferases/metabolismo
6.
J Biol Chem ; 289(18): 12693-704, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24652291

RESUMO

Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-L-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação/genética , Carbono-Oxigênio Liases/genética , Eletroforese em Gel de Poliacrilamida , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Puromicina/análogos & derivados , Puromicina/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/genética , S-Adenosilmetionina/genética , Transcrição Gênica
7.
Plant Cell Physiol ; 54(7): 1056-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23596187

RESUMO

Boron (B) is an essential micronutrient for plants. Efflux-type B transporters, BORs, have been identified in Arabidopsis thaliana and rice. Here we identified BOR1 genes encoding B efflux transporters, from the hexaploid genome of wheat (Triticum aestivum L.). We cloned three genes closely related to OsBOR1 and named them TaBOR1.1, TaBOR1.2 and TaBOR1.3. All three TaBOR1s showed B efflux activities when expressed in tobacco BY-2 cells. TaBOR1-green fluorescent protein (GFP) fusion proteins were expressed in Arabidopsis leaf cells localized in the plasma membrane. The transcript accumulation patterns of the three genes differ in terms of tissue specificity and B nutrition responses. In roots, transcripts for all three genes accumulated abundantly while in shoots, the TaBOR1.2 transcript is the most abundant, followed by those of TaBOR1.1 and TaBOR1.3. Accumulation of TaBOR1.1 transcript is up-regulated under B deficiency conditions in both roots and shoots. In contrast, TaBOR1.2 transcript accumulation significantly increased in roots under excess B conditions. TaBOR1.3 transcript accumulation was reduced under excess B. Taken together, these results demonstrated that TaBOR1s are the B efflux transporters in wheat and, interestingly, the genes on the A, B and D genomes have different expression patterns.


Assuntos
Boro/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Poliploidia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA