Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502237

RESUMO

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Assuntos
Anormalidades Múltiplas , Diferenciação Celular , Cerebelo , Cerebelo/anormalidades , Anormalidades do Olho , Células-Tronco Pluripotentes Induzidas , Doenças Renais Císticas , Neurônios , Retina , Retina/anormalidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Cerebelo/patologia , Cerebelo/metabolismo , Neurônios/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Retina/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/metabolismo , Masculino , Feminino , Mutação/genética , Cílios/metabolismo
2.
Methods Mol Biol ; 2566: 53-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152242

RESUMO

Adipocytes and osteoblasts derive from a common mesenchymal progenitor present in a range of connective tissues. Differentiation of the progenitors toward the two cell lineages can be induced in vitro through well-established protocols, and leads to the appearance of lipid-laden adipocytes and osteoblasts embedded in a mineralized matrix. The formation of these two lineages in cell cultures can be monitored using lipophilic dyes such as Oil Red O and substances binding to mineral deposits such as Alizarin Red S, respectively. However, these common staining techniques require cell fixation and are thus incompatible with live analyses. Recently, alternative approaches using vital stains have allowed the dual visualization and fluorescence imaging of adipogenic and osteogenic lineages in live cultures. Here we present the concomitant analysis of cultures containing adipogenic and osteogenic cell types using live staining, combining LipidTox Red and tetracycline with NucRed nuclear counterstain for confocal imaging. This approach can be applied to visualize the kinetics and 3D structure of differentiating mesenchymal cultures over time and highlights the interaction of adipose and mineralized compartments associated with bone marrow stroma.


Assuntos
Células-Tronco Mesenquimais , Adipogenia , Diferenciação Celular , Células Cultivadas , Corantes/metabolismo , Lipídeos , Minerais , Osteogênese , Células-Tronco , Tetraciclinas/metabolismo
3.
Biomedicines ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892684

RESUMO

Lung cancer is the most prevalent cancer worldwide. Despite advances in surgery and immune-chemotherapy, the therapeutic outcome remains poor. In recent years, the anticancer properties of natural compounds, along with their low toxic side effects, have attracted the interest of researchers. Resveratrol (RSV) and many of its derivatives received particular attention for their beneficial bioactivity. Here we studied the activity of RSV and of its analogue 4,4'-dihydroxystilbene (DHS) in C57BL/6J mice bearing cancers resulting from Lung Lewis Carcinoma (LLC) cell implantation, considering tumour mass weight, angiogenesis, cell proliferation and death, autophagy, as well as characterization of their immune microenvironment, including infiltrating cancer-associated fibroblasts (CAFs). C57BL/6J mice started treatment with RSV or DHS, solubilised in drinking water, one week before LLC implantation, and continued for 21 days, at the end of which they were sacrificed, and the tumour masses collected. Histology was performed according to standard procedures; angiogenesis, cell proliferation and death, autophagy, infiltrating-immune cells, macrophages and fibroblasts were assessed by immunodetection assays. Both stilbenic compounds were able to contrast the tumour growth by increasing apoptosis and autophagy in LLC tumour masses. Additionally, they contrasted the tumour-permissive microenvironment by limiting the infiltration of tumour-associated immune-cells and, more importantly, by counteracting CAF maturation. Therefore, both stilbenes could be employed to synergise with conventional oncotherapies to limit the contribution of stromal cells in tumour growth.

4.
Carbohydr Polym ; 282: 119126, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123750

RESUMO

An innovative approach was developed to engineer a multi-layered chitosan scaffold for osteochondral defect repair. A combination of freeze drying and porogen-leaching out methods produced a porous, bioresorbable scaffold with a distinct gradient of pore size (mean = 160-275 µm). Incorporation of 70 wt% nano-hydroxyapatite (nHA) provided additional strength to the bone-like layer. The scaffold showed instantaneous mechanical recovery under compressive loading and did not delaminate under tensile loading. The scaffold supported the attachment and proliferation of human mesenchymal stem cells (MSCs), with typical adherent cell morphology found on the bone layer compared to a rounded cell morphology on the chondrogenic layer. Osteogenic and chondrogenic differentiation of MSCs preferentially occurred in selected layers of the scaffold in vitro, driven by the distinct pore gradient and material composition. This scaffold is a suitable candidate for minimally invasive arthroscopic delivery in the clinic with potential to regenerate damaged cartilage and bone.


Assuntos
Quitosana , Durapatita , Células-Tronco Mesenquimais/citologia , Nanoestruturas , Alicerces Teciduais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Humanos , Células-Tronco Mesenquimais/metabolismo , Microesferas , Osteogênese , Poliésteres , Resistência à Tração
5.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572062

RESUMO

Low-power sonication is widely used to disaggregate extracellular vesicles (EVs) after isolation, however, the effects of sonication on EV samples beyond dispersion are unclear. The present study analysed the characteristics of EVs collected from mesenchymal stem cells (MSCs) after sonication, using a combination of transmission electron microscopy, direct stochastic optical reconstruction microscopy, and flow cytometry techniques. Results showed that beyond the intended disaggregation effect, sonication using the lowest power setting available was enough to alter the size distribution, membrane integrity, and uptake of EVs in cultured cells. These results point to the need for a more systematic analysis of sonication procedures to improve reproducibility in EV-based cellular experiments.


Assuntos
Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Sonicação/métodos , Animais , Camundongos
6.
Biochem Soc Trans ; 49(4): 1803-1816, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436513

RESUMO

Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.


Assuntos
Diferenciação Celular , Modelos Biológicos , Neoplasias/patologia , Humanos
7.
Cell Physiol Biochem ; 55(3): 311-326, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34148309

RESUMO

BACKGROUND/AIMS: The skeleton is a metabolically active organ undergoing continuous remodelling initiated by mesenchymal progenitors present in bone and bone marrow. Under certain pathological conditions this remodelling balance shifts towards increased resorption resulting in weaker bone microarchitecture, and there is consequently a therapeutic need to identify pathways that could inversely enhance bone formation from stem cells. Metabolomics approaches recently applied to stem cell characterisation could help identify new biochemical markers involved in osteogenic differentiation. METHODS: Combined intra- and extracellular metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS) on human mesenchymal stem cells (MSCs) undergoing osteogenic differentiation in vitro. Using a combination of univariate and multivariate analyses, changes in metabolite and nutrient concentration were monitored in cultures under osteogenic treatment over 10 days. RESULTS: A subset of differentially detected compounds was identified in differentiating cells, suggesting a direct link to metabolic processes involved in osteogenic response. CONCLUSION: These results highlight new metabolite candidates as potential biomarkers to monitor stem cell differentiation towards the bone lineage.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Metaboloma , Metabolômica , Osteogênese , Linhagem Celular Transformada , Humanos
8.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467686

RESUMO

Phosphate-based glasses (PBGs) offer significant therapeutic potential due to their bioactivity, controllable compositions, and degradation rates. Several PBGs have already demonstrated their ability to support direct cell growth and in vivo cytocompatibility for bone repair applications. This study investigated development of PBG formulations with pyro- and orthophosphate species within the glass system (40 - x)P2O5·(16 + x)CaO·20Na2O·24MgO (x = 0, 5, 10 mol%) and their effect on stem cell adhesion properties. Substitution of phosphate for calcium revealed a gradual transition within the glass structure from Q2 to Q0 phosphate species. Human mesenchymal stem cells were cultured directly onto discs made from three PBG compositions. Analysis of cells seeded onto the discs revealed that PBG with higher concentration of pyro- and orthophosphate content (61% Q1 and 39% Q0) supported a 4.3-fold increase in adhered cells compared to glasses with metaphosphate connectivity (49% Q2 and 51% Q1). This study highlights that tuning the composition of PBGs to possess pyro- and orthophosphate species only, enables the possibility to control cell adhesion performance. PBGs with superior cell adhesion profiles represent ideal candidates for biomedical applications, where cell recruitment and support for tissue ingrowth are of critical importance for orthopaedic interventions.


Assuntos
Adesão Celular , Técnicas de Cultura de Células , Vidro/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatos/química , Materiais Biocompatíveis/química , Cálcio/química , Varredura Diferencial de Calorimetria , Núcleo Celular/metabolismo , Difosfatos/química , Consolidação da Fratura , Proteínas de Fluorescência Verde/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Difração de Raios X
9.
ACS Appl Bio Mater ; 4(8): 5987-6004, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006929

RESUMO

Phosphate-based glasses (PBGs) are biomaterials that degrade under physiological conditions and can be modified to release various ions depending on end applications. This study utilized slow-degrading (P45:45P2O5-16CaO-24MgO-11Na2O-4Fe2O3, mol %) and comparatively faster degrading (P40:40P2O5-16CaO-24MgO-20Na2O, mol %) PBG microspheres with or without porosity, to evaluate the combined effect of chemical formulation and geometry on human mesenchymal stem cells (MSCs), a clinically relevant cell source for orthopedic applications. Scanning electron microscopy showed 2, 46, and 29% of P45 bulk (P45-B), P40 bulk (P40-B), and P40 porous (P40-P) microspheres, respectively, that had cracks or peeling off surfaces after 42 days of incubation in culture medium. Cytotoxicity assessment showed that glass debris released into the culture medium may interact with cells and affect their survival. Direct-contact cell experiments up to 42 days showed that P45-B microspheres did not sustain viable long-term cell cultures and did not facilitate extracellular matrix formation. On the other hand, P40-B microspheres enhanced alkaline phosphatase activity, calcium deposition, and collagen and osteocalcin production in MSCs. Introduction of porosity in P40 glass further enhanced these parameters and proliferation at later time points. The small pore windows (<5 µm wide) and interconnection (<10 µm wide) may have allowed limited cell penetration into the porous structures. P40-B and P40-P have potential for bone repair and reinforcement therapy based on their chemical formulation and porous geometry.


Assuntos
Células-Tronco Mesenquimais , Fosfatos , Materiais Biocompatíveis/química , Vidro/química , Humanos , Microesferas , Fosfatos/farmacologia
10.
Laser Photon Rev ; 15(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35360260

RESUMO

The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.

11.
Cells ; 9(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202879

RESUMO

The transcription factor SOX1 is a key regulator of neural stem cell development, acting to keep neural stem cells (NSCs) in an undifferentiated state. Postnatal expression of Sox1 is typically confined to the central nervous system (CNS), however, its expression in non-neural tissues has recently been implicated in tumorigenesis. The mechanism through which SOX1 may exert its function is not fully understood, and studies have mainly focused on changes in SOX1 expression at a transcriptional level, while its post-translational regulation remains undetermined. To investigate this, data were extracted from different publicly available databases and analysed to search for putative SOX1 post-translational modifications (PTMs). Results were compared to PTMs associated with SOX2 in order to identify potentially key PTM motifs common to these SOXB1 proteins, and mapped on SOX1 domain structural models. This approach identified several putative acetylation, phosphorylation, glycosylation and sumoylation sites within known functional domains of SOX1. In particular, a novel SOXB1 motif (xKSExSxxP) was identified within the SOX1 protein, which was also found in other unrelated proteins, most of which were transcription factors. These results also highlighted potential phospho-sumoyl switches within this SOXB1 motif identified in SOX1, which could regulate its transcriptional activity. This analysis indicates different types of PTMs within SOX1, which may influence its regulatory role as a transcription factor, by bringing changes to its DNA binding capacities and its interactions with partner proteins. These results provide new research avenues for future investigations on the mechanisms regulating SOX1 activity, which could inform its roles in the contexts of neural stem cell development and cancer.


Assuntos
Simulação por Computador , Processamento de Proteína Pós-Traducional , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Consenso , Ontologia Genética , Humanos , Modelos Moleculares , Fosforilação , Sumoilação
12.
Cell Physiol Biochem ; 54(5): 917-927, 2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32946687

RESUMO

BACKGROUND/AIMS: Glutamine is the most abundant amino acid in the body and has a metabolic role as a precursor for protein, amino sugar and nucleotide synthesis. After glucose, glutamine is the main source of energy in cells and has recently been shown to be an important carbon source for de novo lipogenesis. Glutamine is synthesized by the enzyme glutamine synthetase, a mitochondrial enzyme that is active during adipocyte differentiation suggesting a regulatory role in this process. The aim of our study was therefore to investigate whether glutamine status impacts on the differentiation of adipocytes and lipid droplet accumulation. METHODS: Mouse mesenchymal stem cells (MSCs) were submitted to glutamine deprivation (i.e. glutamine-free adipogenic medium in conjunction with irreversible glutamine synthetase inhibitor, methionine sulfoximine - MSO) during differentiation and their response was compared with MSCs differentiated in glutamine-supplemented medium (5, 10 and 20 mM). Differentiated MSCs were assessed for lipid content using Oil Red O (ORO) staining and gene expression was analysed by qPCR. Intracellular glutamine levels were determined using a colorimetric assay, while extracellular glutamine was measured using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Glutamine deprivation largely abolished adipogenic differentiation and lipid droplet formation. This was accompanied with a reduction in intracellular glutamine concentration, and downregulation of gene expression for classical adipogenic markers including PPARγ. Furthermore, glutamine restriction suppressed isocitrate dehydrogenase 1 (IDH1) gene expression, an enzyme which produces citrate for lipid synthesis. In contrast, glutamine supplementation promoted adipogenic differentiation in a dose-dependent manner. CONCLUSION: These results suggest that the glutamine pathway may have a previously over-looked role in adipogenesis. The underlying mechanism involved the glutamine-IDH1 pathway and could represent a potential therapeutic strategy to treat excessive lipid accumulation and thus obesity.


Assuntos
Adipogenia/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Meios de Cultura , Glutamato-Amônia Ligase/fisiologia , Glutamina/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , PPAR gama/metabolismo , Células-Tronco/metabolismo
13.
J Cell Mol Med ; 24(19): 11434-11444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32902117

RESUMO

Beige adipocytes possess the morphological and biochemical characteristics of brown adipocytes, including the mitochondrial uncoupling protein (UCP)1. Mesenchymal stem cells (MSCs) are somatic multipotent progenitors which differentiate into lipid-laden adipocytes. Induction of MSC adipogenesis under hypothermic culture conditions (ie 32°C) promotes the appearance of a beige adipogenic phenotype, but the stability of this phenotypic switch after cells are returned to normothermic conditions of 37°C has not been fully examined. Here, cells transferred from 32°C to 37°C retained their multilocular beige-like morphology and exhibited an intermediate gene expression profile, with both beige-like and white adipocyte characteristics while maintaining UCP1 protein expression. Metabolic profile analysis indicated that the bioenergetic status of cells initially differentiated at 32°C adapted post-transfer to 37°C, showing an increase in mitochondrial respiration and glycolysis. The ability of the transferred cells to respond under stress conditions (eg carbonyl cyanide-4-phenylhydrazone (FCCP) treatment) demonstrated higher functional capacity of enzymes involved in the electron transport chain and capability to supply substrate to the mitochondria. Overall, MSC-derived adipocytes incubated at 32°C were able to remain metabolically active and retain brown-like features after 3 weeks of acclimatization at 37°C, indicating these phenotypic characteristics acquired in response to environmental conditions are not fully reversible.


Assuntos
Adipócitos Bege/citologia , Temperatura Baixa , Células-Tronco/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipogenia/genética , Animais , Biomarcadores/metabolismo , Forma Celular/genética , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mitocôndrias/metabolismo , Células-Tronco/metabolismo , Canais de Cátion TRPV/metabolismo , Proteína Desacopladora 1/metabolismo
14.
Biointerphases ; 15(4): 041008, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32752604

RESUMO

Protein-coated polymer-based microparticles are attractive supports for cell delivery, but the interplay between microparticle properties, protein coating, and cell response is poorly understood. The interest in alternative microparticle formulations increases the need for a better understanding of how functional protein coatings form on different microparticles. In this work, microparticle formulations based on biodegradable polymers [poly (lactic-co-glycolic acid) (PLGA) and the triblock copolymer PLGA-poloxamer-PLGA] were prepared via an emulsion-based process. To explore the impact that the use of a surfactant has on the properties of the microparticles, the emulsion was stabilized by using either a surfactant, poly(vinyl alcohol), or an organic solvent, propylene glycol. Four different types of microparticles were prepared through combinations of the two types of polymers and the two types of stabilizers. The coating of microparticles with proteins/polypeptides such as fibronectin and poly-d-lysine has been demonstrated before and is an integral step for their application as microcarriers, e.g., for cell delivery; however, the impact of the microparticles' surface chemical properties on the formation (prevalence and distribution) of the mixed polypeptide coatings and the influence on subsequent cell attachment remain to be elucidated. Using a colocalization analysis approach on ToF-SIMS images of protein-coated microparticles, we show that the use of propyleneglycol over PVA as well as the substitution of PLGA by the triblock copolymer resulted in enhanced protein adsorption. Furthermore, if propyleneglycol is used, the substitution of PLGA with the triblock copolymer leads to increased stem cell adhesion.


Assuntos
Fibronectinas/química , Polilisina/química , Polímeros/química , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/farmacologia , Álcool de Polivinil/química , Propriedades de Superfície
15.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614651

RESUMO

Human mesenchymal stem cells (MSCs) show promise for musculoskeletal repair applications. Animal-derived serum is extensively used for MSC culture as a source of nutrients, extracellular matrix proteins and growth factors. However, the routine use of fetal calf serum (FCS) is not innocuous due to its animal antigens and ill-defined composition, driving the development of alternatives protocols. The present study sought to reduce exposure to FCS via the transient use of human serum. Transient exposure to animal serum had previously proved successful for the osteogenic differentiation of MSCs but had not yet been tested with alternative serum sources. Here, human serum was used to support the proliferation of MSCs, which retained surface marker expression and presented higher alkaline phosphatase activity than those in FCS-based medium. Addition of osteogenic supplements supported strong mineralisation over a 3-week treatment. When limiting serum exposure to the first five days of treatment, MSCs achieved higher differentiation with human serum than with FCS. Finally, human serum analysis revealed significantly higher levels of osteogenic components such as alkaline phosphatase and 25-Hydroxyvitamin D, consistent with the enhanced osteogenic effect. These results indicate that human serum used at the start of the culture offers an efficient replacement for continuous FCS treatment and could enable short-term exposure to patient-derived serum in the future.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese , Soro/química , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo
16.
Sci Rep ; 9(1): 9104, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235722

RESUMO

Brown adipose tissue (BAT) is able to rapidly generate heat and metabolise macronutrients, such as glucose and lipids, through activation of mitochondrial uncoupling protein 1 (UCP1). Diet can modulate UCP1 function but the capacity of individual nutrients to promote the abundance and activity of UCP1 is not well established. Caffeine consumption has been associated with loss of body weight and increased energy expenditure, but whether it can activate UCP1 is unknown. This study examined the effect of caffeine on BAT thermogenesis in vitro and in vivo. Stem cell-derived adipocytes exposed to caffeine (1 mM) showed increased UCP1 protein abundance and cell metabolism with enhanced oxygen consumption and proton leak. These functional responses were associated with browning-like structural changes in mitochondrial and lipid droplet content. Caffeine also increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial biogenesis, together with a number of BAT selective and beige gene markers. In vivo, drinking coffee (but not water) stimulated the temperature of the supraclavicular region, which co-locates to the main region of BAT in adult humans, and is indicative of thermogenesis. Taken together, these results demonstrate that caffeine can promote BAT function at thermoneutrality and may have the potential to be used therapeutically in adult humans.


Assuntos
Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Cafeína/farmacologia , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Camundongos , Biogênese de Organelas , Temperatura , Proteína Desacopladora 1/genética
17.
ACS Appl Mater Interfaces ; 11(17): 15436-15446, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30990301

RESUMO

Phosphate-based glasses (PBGs) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varying pore sizes and interconnectivity for use in a range of applications, including biomedical use. Calcium phosphate PBGs have recently been proposed as orthobiologics, based on their in vitro cytocompatibility and ion release profile. In this study, porous microspheres made of two PBG formulations either containing TiO2 (P40Ti) or without (P40) were implanted in vivo in a large animal model of bone defect. The biocompatibility and osteogenic potential of these porous materials were assessed 13 weeks postimplantation in sheep and compared to empty defects and autologous bone grafts used as negative and positive controls. Histological analysis showed marked differences between the two formulations, as lower trabeculae-like interconnection and higher fatty bone marrow content were observed in the faster degrading P40-implanted defects, while the slower degrading P40Ti material promoted dense interconnected tissue. Autologous bone marrow concentrate (BMC) was also incorporated within the P40 and P40Ti microspheres in some defects; however, no significant differences were observed in comparison to microspheres implanted alone. Both formulations induced the formation of a collagen-enriched matrix, from 20 to 40% for P40 and P40Ti2.5 groups, suggesting commitment toward the bone lineage. With the faster degrading P40 formulation, mineralization of the tissue matrix was observed both with and without BMC. Some lymphocyte-like cells and foreign body multinucleated giant cells were observed with P40Ti2.5, suggesting that this more durable formulation might be linked to an inflammatory response. In conclusion, these first in vivo results indicate that PBG microspheres could be useful candidates for bone repair and regenerative medicine strategies and highlight the role of material degradation in the process of tissue formation and maturation.


Assuntos
Materiais Biocompatíveis/química , Vidro/química , Microesferas , Fosfatos/química , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Porosidade , Ovinos , Titânio/química , Microtomografia por Raio-X
18.
Molecules ; 24(8)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010261

RESUMO

The success of cell therapy approaches is greatly dependent on the ability to precisely deliver and monitor transplanted stem cell grafts at treated sites. Iron oxide particles, traditionally used in vivo for magnetic resonance imaging (MRI), have been shown to also represent a safe and efficient in vitro labelling agent for mesenchymal stem cells (MSCs). Here, stem cells were labelled with magnetic particles, and their resulting response to magnetic forces was studied using 2D and 3D models. Labelled cells exhibited magnetic responsiveness, which promoted localised retention and patterned cell seeding when exposed to magnet arrangements in vitro. Directed migration was observed in 2D culture when adherent cells were exposed to a magnetic field, and also when cells were seeded into a 3D gel. Finally, a model of cell injection into the rodent leg was used to test the enhanced localised retention of labelled stem cells when applying magnetic forces, using whole body imaging to confirm the potential use of magnetic particles in strategies seeking to better control cell distribution for in vivo cell delivery.


Assuntos
Movimento Celular/fisiologia , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia , Linhagem Celular , Humanos , Imageamento por Ressonância Magnética
19.
RSC Adv ; 9(6): 3176-3184, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30774937

RESUMO

Silica-coated superparamagnetic iron nanoparticles (SiMAGs) are an exciting biomedical technology capable of targeted delivery of cell-based therapeutics and disease diagnosis. However, in order to realise their full clinical potential, their intracellular fate must be determined. The analytical techniques of super-resolution fluorescence microscopy, particle counting flow cytometry and pH-sensitive nanosensors were applied to elucidate mechanisms of intracellular SiMAG processing in human mesenchymal stem cell (hMSCs). Super-resolution microscopy showed SiMAG fluorescently-tagged nanoparticles are endocytosed and co-localised within lysosomes. When exposed to simulated lysosomal conditions SiMAGs were solubilised and exhibited diminishing fluorescence emission over 7 days. The in vitro intracellular metabolism of SiMAGs was monitored in hMSCs using flow cytometry and co-localised pH-sensitive nanosensors. A decrease in SiMAG fluorescence emission, which corresponded to a decrease in lysosomal pH was observed, mirroring ex vivo observations, suggesting SiMAG lysosomal exposure degrades fluorescent silica-coatings and iron cores. These findings indicate although there is a significant decrease in intracellular SiMAG loading, sufficient particles remain internalised (>50%) to render SiMAG treated cells amenable to long-term magnetic cell manipulation. Our analytical approach provides important insights into the understanding of the intracellular fate of SiMAG processing, which could be readily applied to other particle therapeutics, to advance their clinical translation.

20.
J Tissue Eng Regen Med ; 13(3): 396-405, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666804

RESUMO

Phosphate-based glasses (PBGs) are ideal materials for regenerative medicine strategies because their composition, degradation rates, and ion release profiles can easily be controlled. Strontium has previously been found to simultaneously affect bone resorption and deposition. Therefore, by combining the inherent properties of resorbable PBG and therapeutic activity of strontium, these glasses could be used as a delivery device of therapeutic factors for the treatment of orthopaedic diseases such as osteoporosis. This study shows the cytocompatibility and osteogenic potential of PBGs where CaO is gradually replaced by SrO in the near invert glass system 40P2 O5 ·(16-x)CaO·20Na2 O·24MgO·xSrO (x = 0, 4, 8, 12, and 16 mol%). Direct seeding of MG63 cells onto glass discs showed no significant difference in cell metabolic activity and DNA amount measurement across the different formulations studied. Cell attachment and spreading was confirmed via scanning electron microscopy (SEM) imaging at Days 3 and 14. Alkaline phosphatase (ALP) activity was similarly maintained across the glass compositions. Follow-on studies explored the effect of each glass composition in microsphere conformation (size: 63-125 µm) on human mesenchymal stem cells (hMSCs) in 3D cultures, and analysis of cell metabolic activity and ALP activity showed no significant differences at Day 14 over the compositional range investigated, in line with the observations from MG63 cell culture studies. Environmental SEM and live cell imaging at Day 14 of hMSCs seeded on the microspheres showed cell attachment and colonisation of the microsphere surfaces, confirming these formulations as promising candidates for regenerative medicine strategies addressing compromised musculoskeletal/orthopaedic diseases.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Cálcio/farmacologia , Vidro/química , Microesferas , Fosfatos/farmacologia , Estrôncio/farmacologia , Fosfatase Alcalina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA