Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3090, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035281

RESUMO

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio/terapia , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Células HeLa , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Resultado do Tratamento , Triglicerídeos/metabolismo
3.
J Proteome Res ; 15(4): 1342-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26958868

RESUMO

The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.


Assuntos
Antiporters/genética , AMP Cíclico/farmacologia , Células Epiteliais/efeitos dos fármacos , Glucagon/farmacologia , Glucose-6-Fosfatase/genética , Glucose/biossíntese , Proteínas de Transporte de Monossacarídeos/genética , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Animais , Antiporters/metabolismo , Células CACO-2 , Linhagem Celular , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/metabolismo , Células Hep G2 , Humanos , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Biossíntese de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Transdução de Sinais
4.
Diabetes ; 61(10): 2451-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787137

RESUMO

The activation of glucose-6-phosphatase (G6Pase), a key enzyme of endogenous glucose production, is correlated with type 2 diabetes. Type 2 diabetes is characterized by sustained hyperglycemia leading to glucotoxicity. We investigated whether glucotoxicity mechanisms control the expression of the G6Pase catalytic unit (G6pc). We deciphered the transcriptional regulatory mechanisms of the G6pc promoter by glucotoxicity in a hepatoma cell line then in primary hepatocytes and in the liver of diabetic mice. High glucose exposure induced the production of reactive oxygen species (ROS) and, in parallel, induced G6pc promoter activity. In hepatocytes, glucose induced G6pc gene expression and glucose release. The decrease of ROS concentrations by antioxidants eliminated all the glucose-inductive effects. The induction of G6pc promoter activity by glucose was eliminated in the presence of small interfering RNA, targeting either the hypoxia-inducible factor (HIF)-1α or the CREB-binding protein (CBP). Glucose increased the interaction of HIF-1α with CBP and the recruitment of HIF-1 on the G6pc promoter. The same mechanism might occur in hyperglycemic mice. We deciphered a new regulatory mechanism induced by glucotoxicity. This mechanism leading to the induction of HIF-1 transcriptional activity may contribute to the increase of hepatic glucose production during type 2 diabetes.


Assuntos
Proteína de Ligação a CREB/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose/toxicidade , Hepatócitos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/metabolismo , Animais , Proteína de Ligação a CREB/genética , Linhagem Celular , Células Cultivadas , Glucose-6-Fosfatase/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/citologia , Fígado/efeitos dos fármacos , Camundongos , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo
5.
Biochimie ; 94(3): 695-703, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21983240

RESUMO

Glucose-6 phosphatase (G6Pase), a key enzyme of glucose homeostasis, catalyses the hydrolysis of glucose-6 phosphate (G6P) to glucose and inorganic phosphate. A deficiency in G6Pase activity causes type 1 glycogen storage disease (GSD-1), mainly characterised by hypoglycaemia. Genetic analyses of the two forms of this rare disease have shown that the G6Pase system consists of two proteins, a catalytic subunit (G6PC) responsible for GSD-1a, and a G6P translocase (G6PT), responsible for GSD-1b. However, since their identification, few investigations concerning their structural relationship have been made. In this study, we investigated the localisation and membrane organisation of the G6Pase complex. To this aim, we developed chimera proteins by adding a fluorescent protein to the C-terminal ends of both subunits. The G6PC and G6PT fluorescent chimeras were both addressed to perinuclear membranes as previously suggested, but also to vesicles throughout the cytoplasm. We demonstrated that both proteins strongly colocalised in perinuclear membranes. Then, we studied G6PT organisation in the membrane. We highlighted FRET between the labelled C and N termini of G6PT. The intramolecular FRET of this G6PT chimera was 27%. The coexpression of unlabelled G6PC did not modify this FRET intensity. Finally, the chimera constructs generated in this work enabled us for the first time to analyze the relationship between GSD-1 mutations and the intracellular localisation of both G6Pase subunits. We showed that GSD1 mutations did neither alter the G6PC or G6PT chimera localisation, nor the interaction between G6PT termini. In conclusion, our results provide novel information on the intracellular distribution and organisation of the G6Pase complex.


Assuntos
Glucose-6-Fosfatase/metabolismo , Subunidades Proteicas/metabolismo , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Transferência Ressonante de Energia de Fluorescência , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Células HeLa , Células Hep G2 , Humanos , Immunoblotting , Imuno-Histoquímica , Membranas Intracelulares , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Biol Chem ; 286(47): 40857-66, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21984830

RESUMO

Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Canais KATP/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Ratos Wistar , Compostos de Sulfonilureia/farmacologia
7.
Cell Metab ; 8(3): 201-11, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18762021

RESUMO

Unlike the adjustable gastric banding procedure (AGB), Roux-en-Y gastric bypass surgery (RYGBP) in humans has an intriguing effect: a rapid and substantial control of type 2 diabetes mellitus (T2DM). We performed gastric lap-band (GLB) and entero-gastro anastomosis (EGA) procedures in C57Bl6 mice that were fed a high-fat diet. The EGA procedure specifically reduced food intake and increased insulin sensitivity as measured by endogenous glucose production. Intestinal gluconeogenesis increased after the EGA procedure, but not after gastric banding. All EGA effects were abolished in GLUT-2 knockout mice and in mice with portal vein denervation. We thus provide mechanistic evidence that the beneficial effects of the EGA procedure on food intake and glucose homeostasis involve intestinal gluconeogenesis and its detection via a GLUT-2 and hepatoportal sensor pathway.


Assuntos
Derivação Gástrica , Gastroplastia , Gluconeogênese , Glucose/metabolismo , Intestino Delgado/metabolismo , Obesidade Mórbida/metabolismo , Animais , Gorduras na Dieta/administração & dosagem , Ingestão de Alimentos , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 2/deficiência , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Obesidade Mórbida/cirurgia , Veia Porta/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA