Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autoimmun Rev ; 22(11): 103452, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742748

RESUMO

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a devastating disease affecting millions of people worldwide. Due to the 2019 pandemic of coronavirus disease (COVID-19), we are facing a significant increase of ME/CFS prevalence. On May 11th to 12th, 2023, the second international ME/CFS conference of the Charité Fatigue Center was held in Berlin, Germany, focusing on pathomechanisms, diagnosis, and treatment. During the two-day conference, more than 100 researchers from various research fields met on-site and over 700 attendees participated online to discuss the state of the art and novel findings in this field. Key topics from the conference included: the role of the immune system, dysfunction of endothelial and autonomic nervous system, and viral reactivation. Furthermore, there were presentations on innovative diagnostic measures and assessments for this complex disease, cutting-edge treatment approaches, and clinical studies. Despite the increased public attention due to the COVID-19 pandemic, the subsequent rise of Long COVID-19 cases, and the rise of funding opportunities to unravel the pathomechanisms underlying ME/CFS, this severe disease remains highly underresearched. Future adequately funded research efforts are needed to further explore the disease etiology and to identify diagnostic markers and targeted therapies.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/epidemiologia , Síndrome de Fadiga Crônica/terapia , Pandemias , Síndrome de COVID-19 Pós-Aguda , Prevalência
2.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906052

RESUMO

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Autoanticorpos , Autoimunidade , Receptores Acoplados a Proteínas G/metabolismo
3.
Front Immunol ; 13: 981532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238301

RESUMO

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Autoanticorpos , Humanos
4.
Cells ; 11(15)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954219

RESUMO

A proportion of COVID-19 reconvalescent patients develop post-COVID-19 syndrome (PCS) including a subgroup fulfilling diagnostic criteria of Myalgic encephalomyelitis/Chronic Fatigue Syndrome (PCS/CFS). Recently, endothelial dysfunction (ED) has been demonstrated in these patients, but the mechanisms remain elusive. Therefore, we investigated the effects of patients' sera on endothelia cells (ECs) in vitro. PCS (n = 17), PCS/CFS (n = 13), and healthy controls (HC, n = 14) were screened for serum anti-endothelial cell autoantibodies (AECAs) and dysregulated cytokines. Serum-treated ECs were analysed for the induction of activation markers and the release of small molecules by flow cytometry. Moreover, the angiogenic potential of sera was measured in a tube formation assay. While only marginal differences between patient groups were observed for serum cytokines, AECA binding to ECs was significantly increased in PCS/CFS patients. Surprisingly, PCS and PCS/CFS sera reduced surface levels of several EC activation markers. PCS sera enhanced the release of molecules associated with vascular remodelling and significantly promoted angiogenesis in vitro compared to the PCS/CFS and HC groups. Additionally, sera from both patient cohorts induced the release of molecules involved in inhibition of nitric oxide-mediated endothelial relaxation. Overall, PCS and PCS/CFS patients' sera differed in their AECA content and their functional effects on ECs, i.e., secretion profiles and angiogenic potential. We hypothesise a pro-angiogenic effect of PCS sera as a compensatory mechanism to ED which is absent in PCS/CFS patients.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Biomarcadores , COVID-19/complicações , Citocinas , Síndrome de Fadiga Crônica/metabolismo , Humanos , Síndrome de COVID-19 Pós-Aguda
5.
J Transl Med ; 20(1): 138, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317812

RESUMO

BACKGROUND: Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS. METHODS: We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers. RESULTS: Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs. CONCLUSION: A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Biomarcadores , COVID-19/complicações , Células Endoteliais , Endotélio , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
6.
Front Immunol ; 12: 581799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953705

RESUMO

Forkhead box O 3 (FOXO3) is a transcription factor involved in cell metabolism, inflammation and longevity. Here, we investigated if metformin can activate FOXO3 in human immune cells and affects the subsequent level of reactive oxygen/nitrogen species (ROS/RNS) in immune cells. AMP-activated protein kinase (AMPK) and FOXO3 activation were investigated by immunoblot or flow cytometry (FC) analysis, respectively. FOXO3 target gene expression was quantified by real-time PCR. ROS/RNS measurement using dichlorodihydrofluorescein diacetate (DCFH-DA) dye was investigated by FC. The role of the FOXO3 single nucleotide polymorphisms (SNPs) rs12212067, rs2802292 and rs12206094 on ROS/RNS production was studied using allelic discrimination PCR. Metformin induced activation of AMPK (pT172) and FOXO3 (pS413). ROS/RNS level was reduced in immune cells after metformin stimulation accompanied by induction of the FOXO3 targets mitochondrial superoxide dismutase and cytochrome c. Studies in Foxo3 deficient (Foxo3-/- ) mouse splenocytes confirmed that metformin mediates its effects via Foxo3 as it attenuates ROS/RNS in myeloid cells of wildtype (WT) but not of Foxo3-/- mice. Our results suggest that FOXO3 can be activated by metformin leading to reduced ROS/RNS level in immune cells. This may add to the beneficial clinical effects of metformin observed in large cohort studies on longevity, cardiovascular and cancer risk.


Assuntos
Proteína Forkhead Box O3/metabolismo , Sistema Imunitário/efeitos dos fármacos , Metformina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo
7.
Front Immunol ; 12: 644548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889154

RESUMO

Soluble cluster of differentiation 26 (sCD26) has a wide range of enzymatic functions affecting immunological, metabolic and vascular regulation. Diminished sCD26 concentrations have been reported in various autoimmune diseases and also in Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). Here we re-evaluate sCD26 as a diagnostic marker and perform a comprehensive correlation analysis of sCD26 concentrations with clinical and paraclinical parameters in ME/CFS patients. Though this study did find significantly lower concentrations of sCD26 only in the female cohort and could not confirm diagnostic suitability, results from correlation analyses provide striking pathomechanistic insights. In patients with infection-triggered onset, the associations of low sCD26 with elevated autoantibodies (AAB) against alpha1 adrenergic (AR) and M3 muscarinic acetylcholine receptors (mAChR) point to a pathomechanism of infection-triggered autoimmune-mediated vascular and immunological dysregulation. sCD26 concentrations in infection-triggered ME/CFS were found to be associated with activated T cells, liver enzymes, creatin kinase (CK) and lactate dehydrogenase (LDH) and inversely with Interleukin-1 beta (IL-1b). Most associations are in line with the known effects of sCD26/DPP-4 inhibition. Remarkably, in non-infection-triggered ME/CFS lower sCD26 in patients with higher heart rate after orthostatic challenge and postural orthostatic tachycardia syndrome (POTS) suggest an association with orthostatic regulation. These findings provide evidence that the key enzyme sCD26 is linked to immunological alterations in infection-triggered ME/CFS and delineate a different pathomechanism in the non-infectious ME/CFS subset.


Assuntos
Autoanticorpos/imunologia , Sistema Cardiovascular/imunologia , Dipeptidil Peptidase 4/imunologia , Síndrome de Fadiga Crônica/imunologia , Infecções/imunologia , Receptor Muscarínico M3/imunologia , Receptores Adrenérgicos alfa 1/imunologia , Adulto , Feminino , Humanos , Masculino
8.
Front Immunol ; 11: 578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328064

RESUMO

Single nucleotide polymorphisms (SNP) in various genes have been described to be associated with susceptibility to autoimmune disease. In this study, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients and controls were genotyped for five immune gene SNPs in tyrosine phosphatase non-receptor type 22 (PTPN22, rs2476601), cytotoxic T-lymphocyte-associated protein 4 (CTLA4, rs3087243), tumor necrosis factor (TNF, rs1800629 and rs1799724), and interferon regulatory factor 5 (IRF5, rs3807306), which are among the most important risk variants for autoimmune diseases. Analysis of 305 ME/CFS patients and 201 healthy controls showed significant associations of the PTPN22 rs2476601 and CTLA4 rs3087243 autoimmunity-risk alleles with ME/CFS. The associations were only found in ME/CFS patients, who reported an acute onset of disease with an infection (PTPN22 rs2476601: OR 1.63, CI 1.04-2.55, p = 0.016; CTLA4 rs3087243: OR 1.53, CI 1.17-2.03, p = 0.001), but not in ME/CFS patients without infection-triggered onset (PTPN22 rs2476601: OR 1.09, CI 0.56-2.14, p = 0.398; CTLA4 rs3087243: OR 0.89, CI 0.61-1.30, p = 0.268). This finding provides evidence that autoimmunity might play a role in ME/CFS with an infection-triggered onset. Both genes play a key role in regulating B and T cell activation.


Assuntos
Antígeno CTLA-4/genética , Síndrome de Fadiga Crônica/etiologia , Síndrome de Fadiga Crônica/genética , Infecções/complicações , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Adolescente , Adulto , Idoso , Autoimunidade/genética , Autoimunidade/imunologia , Síndrome de Fadiga Crônica/imunologia , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
9.
ESC Heart Fail ; 7(3): 1064-1071, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32154656

RESUMO

AIMS: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystem disease. Evidence for disturbed vascular regulation comes from various studies showing cerebral hypoperfusion and orthostatic intolerance. The peripheral endothelial dysfunction (ED) has not been sufficiently investigated in patients with ME/CFS. The aim of the present study was to examine peripheral endothelial function in patients with ME/CFS. METHODS AND RESULTS: Thirty-five patients [median age 40 (range 18-70) years, mean body mass index 23.8 ± 4.2 kg/m2 , 31% male] with ME/CFS were studied for peripheral endothelial function assessed by peripheral arterial tonometry (EndoPAT2000). Clinical diagnosis of ME/CFS was based on Canadian Criteria. Nine of these patients with elevated antibodies against ß2-adrenergic receptor underwent immunoadsorption, and endothelial function was measured at baseline and 3, 6, and 12 months follow-up. ED was defined by reactive hyperaemia index ≤1.81. Twenty healthy subjects of similar age and body mass index were used as a control group. Peripheral ED was found in 18 of 35 patients (51%) with ME/CFS and in 4 healthy subjects (20%, P < 0.05). Patients with ED, in contrast to patients with normal endothelial function, reported more severe disease according to Bell score (31 ± 12 vs. 40 ± 16, P = 0.04), as well as more severe fatigue-related symptoms (8.62 ± 0.87 vs. 7.75 ± 1.40, P = 0.04) including a higher demand for breaks [9.0 (interquartile range 7.0-10.0) vs. 7.5 (interquartile range 6.0-9.25), P = 0.04]. Peripheral ED showed correlations with more severe immune-associated symptoms (r = -0.41, P = 0.026), such as sore throat (r = -0.38, P = 0.038) and painful lymph nodes (r = -0.37, P = 0.042), as well as more severe disease according to Bell score (r = 0.41, P = 0.008) and symptom score (r = -0.59, P = 0.005). There were no differences between the patient group with ED and the patient group with normal endothelial function regarding demographic, metabolic, and laboratory parameters. Further, there was no difference in soluble vascular cell adhesion molecule and soluble intercellular adhesion molecule levels. At baseline, peripheral ED was observed in six patients who underwent immunoadsorption. After 12 months, endothelial function had improved in five of these six patients (reactive hyperaemia index 1.58 ± 0.15 vs. 2.02 ± 0.46, P = 0.06). CONCLUSIONS: Peripheral ED is frequent in patients with ME/CFS and associated with disease severity and severity of immune symptoms. As ED is a risk factor for cardiovascular disease, it is important to elucidate if peripheral ED is associated with increased cardiovascular morbidity and mortality in ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Canadá , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/epidemiologia , Síndrome de Fadiga Crônica/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
10.
J Transl Med ; 16(1): 231, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30119681

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease with huge social-economic impact. It has been suggested that immune dysregulation, nitrooxidative stress, and metabolic impairment might contribute to disease pathogenesis. However, the etiology of ME/CFS remains largely unclear, and diagnostic/prognostic disease markers are lacking. Several long noncoding RNAs (lncRNA, > 200 bp) have been reported to play roles in immunological diseases or in stress responses. METHODS: In our study, we examined the expression signature of 10 very long lncRNAs (> 5 kb, CR933609, His-RNA, AK124742, GNAS1-AS, EmX2OS, MIAT, TUG1, NEAT1, MALAT1, NTT) in the peripheral blood mononuclear cells of 44 ME/CFS patients. RESULTS: LncRNAs NTT, MIAT and EmX2OS levels were found to be significantly elevated in ME/CFS patients as compared with healthy controls. Furthermore, NTT and EmX2OS levels increased with disease severity. Stimulation of human monocytic cell line THP-1 and glioma cell line KALS1 with H2O2 (oxidative stress) and poly (I:C) (double strand RNA, representing viral activation) increased the expression levels of NTT and MIAT. CONCLUSIONS: Our study revealed a ME/CFS-associated very long lncRNA expression signature, which might reflect the regulatory response in ME/CFS patients to oxidative stress, chronic viral infection and hypoxemia. Further investigations need to be done to uncover the functions and potential diagnostic value of these lncRNAs in ME/CFS.


Assuntos
Síndrome de Fadiga Crônica/genética , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , RNA Longo não Codificante/genética , Adulto , Linhagem Celular , Linhagem Celular Tumoral , Síndrome de Fadiga Crônica/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Hipóxia/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Análise de Componente Principal , Prognóstico , Estresse Fisiológico , Regulação para Cima , Viroses/fisiopatologia , Adulto Jovem
11.
Autoimmun Rev ; 17(6): 601-609, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29635081

RESUMO

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent and severe chronic disease drastically impairing life quality. The underlying pathomechanism is incompletely understood yet but there is convincing evidence that in at least a subset of patients ME/CFS has an autoimmune etiology. In this review, we will discuss current autoimmune aspects for ME/CFS. Immune dysregulation in ME/CFS has been frequently described including changes in cytokine profiles and immunoglobulin levels, T- and B-cell phenotype and a decrease of natural killer cell cytotoxicity. Moreover, autoantibodies against various antigens including neurotransmitter receptors have been recently identified in ME/CFS individuals by several groups. Consistently, clinical trials from Norway have shown that B-cell depletion with rituximab results in clinical benefits in about half of ME/CFS patients. Furthermore, recent studies have provided evidence for severe metabolic disturbances presumably mediated by serum autoantibodies in ME/CFS. Therefore, further efforts are required to delineate the role of autoantibodies in the onset and pathomechanisms of ME/CFS in order to better understand and properly treat this disease.


Assuntos
Doenças Autoimunes/complicações , Síndrome de Fadiga Crônica/etiologia , Autoanticorpos/fisiologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Linfócitos B/fisiologia , Síndrome de Fadiga Crônica/tratamento farmacológico , Síndrome de Fadiga Crônica/imunologia , Humanos , Fenótipo , Rituximab/uso terapêutico
12.
PLoS One ; 12(6): e0179124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28604802

RESUMO

BACKGROUND: Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. METHODS: We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. RESULTS: EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. CONCLUSION: Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.


Assuntos
Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/imunologia , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/imunologia , Herpesvirus Humano 4/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Biomarcadores , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Síndrome de Fadiga Crônica/complicações , Síndrome de Fadiga Crônica/epidemiologia , Feminino , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/genética , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Prevalência , Análise Serial de Proteínas , Carga Viral
13.
Curr Biol ; 26(18): R834-R835, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27676297

RESUMO

In response to proteasome inhibition, the transcription factor Nrf1 facilitates de novo synthesis of proteasomes by inducing proteasome subunit (PSM) genes [1,2]. Previously, we showed that activation of the p120 form of Nrf1, a membrane-bound protein in the endoplasmic reticulum (ER) with the bulk of its polypeptide in the lumen, involves its retrotranslocation into the cytosol in a manner that depends on the AAA-ATPase p97/VCP [3]. This is followed by proteolytic processing and mobilization of the transcriptionally active p110 form of Nrf1 to the nucleus. A subsequent study suggested that site-specific proteolytic processing of Nrf1 by the proteasome yields an active 75 kDa fragment [4]. We show here that under conditions where all three active sites of the proteasome are completely blocked, p120 Nrf1 can still be proteolytically cleaved to the p110 form, which is translocated to the nucleus to activate transcription of PSM genes. Thus, our results indicate that a proteasome-independent pathway can promote the release of active p110 Nrf1 from the ER membrane.


Assuntos
Fator 1 Nuclear Respiratório/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fator 1 Nuclear Respiratório/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Antioxid Redox Signal ; 25(16): 870-885, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27345029

RESUMO

AIMS: Precise regulation of cellular protein degradation is essential for maintaining protein and redox homeostasis. The ubiquitin proteasome system (UPS) represents one of the major degradation machineries, and UPS disturbances are strongly associated with neurodegeneration. We have previously shown that the transcription factor TCF11/Nrf1 induces antioxidant response element-mediated upregulation of UPS components in response to proteotoxic stress. Knockout of TCF11/Nrf1 is embryonically lethal, and therefore, the present investigation describes the role of oxidative stress in regulating TCF11/Nrf1-dependent proteasome expression in a model system relevant to Parkinson's disease. RESULTS: Using the human dopaminergic neuroblastoma cell line SH-SY5Y and mouse nigrostriatal organotypic slice cultures, gene and protein expression analysis and functional assays revealed oxidative stress is induced by the proteasome inhibitor epoxomicin or the mitochondrial complex I inhibitor rotenone and promotes the upregulation of proteasome expression and function mediated by TCF11/Nrf1 activation. In addition, we show that these stress conditions induce the unfolded protein response. TCF11/Nrf1, thus, has a cytoprotective function in response to oxidative and proteotoxic stress. Innovation and Conclusion: We here demonstrate that adaption of the proteasome system in response to oxidative stress is dependent on TCF11/Nrf1 in this model system. We conclude that TCF11/Nrf1, therefore, plays a vital role in maintaining redox and protein homeostasis. This work provides a vital insight into the molecular mechanisms of neurodegeneration due to oxidative stress by rotenone, and further studies investigating the role of TCF11/Nrf1 in the human condition would be of considerable interest. Antioxid. Redox Signal. 25, 870-885.


Assuntos
Fator 1 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Rotenona/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Pré-Escolar , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Fator 1 Relacionado a NF-E2/genética , Fator 1 Nuclear Respiratório/genética , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
J Clin Invest ; 125(11): 4196-211, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26524591

RESUMO

Autosomal recessive mutations in proteasome subunit ß 8 (PSMB8), which encodes the inducible proteasome subunit ß5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes ß7), PSMB9 (encodes ß1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Interferon Tipo I/biossíntese , Lipodistrofia/genética , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Sequência de Aminoácidos , Células Cultivadas , Fibroblastos , Regulação da Expressão Gênica , Genótipo , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Interferon Tipo I/genética , Lipodistrofia/imunologia , Lipodistrofia/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Conformação Proteica , Subunidades Proteicas , Interferência de RNA , RNA Interferente Pequeno/genética , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Síndrome , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA