Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Nat Cell Biol ; 26(4): 613-627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429478

RESUMO

The ability of tumour cells to thrive in harsh microenvironments depends on the utilization of nutrients available in the milieu. Here we show that pancreatic cancer-associated fibroblasts (CAFs) regulate tumour cell metabolism through the secretion of acetate, which can be blocked by silencing ATP citrate lyase (ACLY) in CAFs. We further show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) channels the exogenous acetate to regulate the dynamic cancer epigenome and transcriptome, thereby facilitating cancer cell survival in an acidic microenvironment. Comparative H3K27ac ChIP-seq and RNA-seq analyses revealed alterations in polyamine homeostasis through regulation of SAT1 gene expression and enrichment of the SP1-responsive signature. We identified acetate/ACSS2-mediated acetylation of SP1 at the lysine 19 residue that increased SP1 protein stability and transcriptional activity. Genetic or pharmacologic inhibition of the ACSS2-SP1-SAT1 axis diminished the tumour burden in mouse models. These results reveal that the metabolic flexibility imparted by the stroma-derived acetate enabled cancer cell survival under acidosis via the ACSS2-SP1-SAT1 axis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Acetatos/farmacologia , Acetatos/metabolismo , Neoplasias Pancreáticas/genética , Poliaminas , Microambiente Tumoral
3.
ACS Pharmacol Transl Sci ; 6(12): 1859-1869, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093839

RESUMO

Prostate cancer is the third leading cause of cancer-related death in men in the United States. Taxane chemotherapy is a staple therapy for men with metastatic prostate cancer, yet the median survival is less than 2 years in this setting. New strategies are needed to overcome taxane resistance to improve patient survival. Fatty acid synthase (FASN) is overexpressed in many types of cancer, and several inhibitors have been designed in the past 30 years. Previously, we showed that the FASN inhibitor orlistat was able to synergize with taxanes in two established taxane-resistant (TxR) cell lines. In the current study, we investigated five FASN inhibitors-cerulenin, orlistat, triclosan, thiophenopyrimidine fasnall, and pyrazole derivative TVB-3166 for their potential to synergize with docetaxel (a microtubule stabilizer) and vinblastine (a microtubule destabilizer) in TxR cell lines. Orlistat, TVB-3166, and fasnall synergistically inhibited cell viability when combined with docetaxel and vinblastine in PC3-TxR and DU145-TxR cells. Confocal microscopy and immunoblot with an antidetyrosinated tubulin antibody demonstrated that enhanced microtubule stability was induced by the combined treatment of FASN inhibitors and docetaxel compared with docetaxel alone, while combinations of FASN inhibitors with vinblastine diminished microtubule stability compared to vinblastine alone.

4.
J Immunol Res ; 2021: 9942605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514003

RESUMO

The diagnosis and monitoring of cancer have been facilitated by discovering tumor "biomarkers" and methods to detect their presence. Yet, for certain cancers, we still lack sensitive and specific biomarkers or the means to quantify subtle concentration changes successfully. The identification of new biomarkers of disease and improving the sensitivity of detection will remain key to changing clinical outcomes. Patient liquid biopsies (serum and plasma) are the most easily obtained sources for noninvasive analysis of proteins that tumor cells release directly and via extracellular microvesicles and tumor shedding. Therefore, an emphasis on creating reliable assays using serum/plasma and "direct, in-solution" ELISA approaches has built an industry centered on patient protein biomarker analysis. A need for improved dynamic range and automation has resulted in the application of ELISA principles to paramagnetic beads with chemiluminescent or fluorescent detection. In the clinical testing lab, chemiluminescent paramagnetic assays are run on automated machines that test a single analyte, minimize technical variation, and are not limited by serum sample volumes. This differs slightly from the R&D setting, where serum samples are often limiting; therefore, multiplexing antibodies to test multiple biomarkers in low serum volumes may be preferred. This review summarizes the development of historical biomarker "standards", paramagnetic particle assay principles, chemiluminescent or fluorescent biomarker detection advancements, and multiplexing for sensitive detection of novel serum biomarkers.


Assuntos
Biomarcadores Tumorais , Biópsia Líquida/métodos , Biópsia Líquida/normas , Neoplasias/diagnóstico , Neoplasias/etiologia , Automação , Biomarcadores Tumorais/sangue , Colorimetria/métodos , Colorimetria/normas , Gerenciamento Clínico , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Medições Luminescentes/métodos , Medições Luminescentes/normas , Neoplasias/sangue , Curva ROC , Sensibilidade e Especificidade
5.
Acta Biomater ; 75: 323-333, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29890268

RESUMO

The presence of positive surgical margins confers an increased risk of biochemical relapse and need for salvage therapy in men undergoing radical prostatectomy. Image-guided surgery using near-infrared (NIR) fluorescent contrast agents is a potential method to detect remaining cancerous tissue. The objective of this study was to evaluate three hyaluronic acid (HA) nanoparticle (NP) formulations loaded with NIR fluorophore for their ability to contrast-enhance prostate cancer. HA was modified by conjugation with the hydrophobic ligand, aminopropyl-1-pyrenebutanamide to drive nanoparticle self-assembly. Indocyanine green (ICG) was physicochemically entrapped in the HA-NP, termed NanoICG. Alternatively, Cy7.5 was directly conjugated to amphiphilic HA, termed NanoCy7.5. NanoCy7.5 was synthesized with two HA molecular weights to determine the HA size contribution to delivery to PC3 prostate tumor xenografts. Contrast-enhancement of the tumors and relative biodistribution were assessed by a series of fluorescence imaging, image-guided surgery with spectroscopy, and microscopic techniques. Intravenously administered NanoICG improved tumor signal-to-noise ratio (SNR) at 24 h over ICG by 2.9-fold. NanoCy7.5 with 10 kDa and 100 kDa HA improved tumor SNR by 6.6- and 3.1-fold over Cy7.5 alone, respectively. The PC3 xenograft was clearly identified with the image-guided system providing increased contrast enhancement compared to surrounding tissue for NanoICG and NanoCy7.5 with 10 kDa HA. NIR fluorescence microscopy showed that Cy7.5 in NPs with 10 kDa HA were distributed throughout the tumor, while NanoCy7.5 with 100 kDa HA or NanoICG delivered dye mainly to the edge of the tumor. CD31 staining suggested that PC3 tumors are poorly vascularized. These studies demonstrate the efficacy of a panel of HA-derived NPs in identifying prostate tumors in vivo, and suggest that by tuning the structural properties of these NPs, optimized delivery can be achieved to poorly vascularized tumors. STATEMENT OF SIGNIFICANCE: We have demonstrated the potential of a panel of near-infrared fluorescent (NIRF) nanoparticles (NPs) for image-guided surgery in a prostate cancer xenograft model. Image-guided surgery and imaging of organs ex vivo showed greater tumor signal and contrast when mice were administered NIRF dyes that were covalently conjugated to (NanoCy7.510k-PBA) or physicochemically entrapped in (NanoICGPBA) hyaluronic acid (HA) NPs, compared to free dyes. These results show the potential to use these NPs as tools to detect the margins of tumors and to differentiate healthy and tumor tissue intraoperatively. Moreover, this project provides insight into selecting optimal formulation strategies for poorly vascularized tumors.


Assuntos
Carbocianinas , Meios de Contraste , Ácido Hialurônico , Raios Infravermelhos , Nanopartículas , Neoplasias da Próstata , Animais , Carbocianinas/química , Carbocianinas/farmacocinética , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Xenoenxertos , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/farmacologia , Masculino , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/uso terapêutico , Transplante de Neoplasias , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
6.
Nanomedicine ; 14(3): 769-780, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29325740

RESUMO

Pancreatic ductal adenocarcinoma is highly lethal and surgical resection is the only potential curative treatment for the disease. In this study, hyaluronic acid derived nanoparticles with physico-chemically entrapped indocyanine green, termed NanoICG, were utilized for intraoperative near infrared fluorescence detection of pancreatic cancer. NanoICG was not cytotoxic to healthy pancreatic epithelial cells and did not induce chemotaxis or phagocytosis, it accumulated significantly within the pancreas in an orthotopic pancreatic ductal adenocarcinoma model, and demonstrated contrast-enhancement for pancreatic lesions relative to non-diseased portions of the pancreas. Fluorescence microscopy showed higher fluorescence intensity in pancreatic lesions and splenic metastases due to NanoICG compared to ICG alone. The in vivo safety profile of NanoICG, including, biochemical, hematological, and pathological analysis of NanoICG-treated healthy mice, indicates negligible toxicity. These results suggest that NanoICG is a promising contrast agent for intraoperative detection of pancreatic tumors.


Assuntos
Ácido Hialurônico/química , Verde de Indocianina/administração & dosagem , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Quimiotaxia , Modelos Animais de Doenças , Feminino , Fluorescência , Verde de Indocianina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Nanopartículas/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Fagocitose , Células Tumorais Cultivadas
7.
Clin Cancer Res ; 23(19): 5881-5891, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720669

RESUMO

Purpose:MUC1, an oncogene overexpressed in multiple solid tumors, including pancreatic cancer, reduces overall survival and imparts resistance to radiation and chemotherapies. We previously identified that MUC1 facilitates growth-promoting metabolic alterations in pancreatic cancer cells. The present study investigates the role of MUC1-mediated metabolism in radiation resistance of pancreatic cancer by utilizing cell lines and in vivo models.Experimental Design: We used MUC1-knockdown and -overexpressed cell line models for evaluating the role of MUC1-mediated metabolism in radiation resistance through in vitro cytotoxicity, clonogenicity, DNA damage response, and metabolomic evaluations. We also investigated whether inhibition of glycolysis could revert MUC1-mediated metabolic alterations and radiation resistance by using in vitro and in vivo models.Results: MUC1 expression diminished radiation-induced cytotoxicity and DNA damage in pancreatic cancer cells by enhancing glycolysis, pentose phosphate pathway, and nucleotide biosynthesis. Such metabolic reprogramming resulted in high nucleotide pools and radiation resistance in in vitro models. Pretreatment with the glycolysis inhibitor 3-bromopyruvate abrogated MUC1-mediated radiation resistance both in vitro and in vivo, by reducing glucose flux into nucleotide biosynthetic pathways and enhancing DNA damage, which could again be reversed by pretreatment with nucleoside pools.Conclusions: MUC1-mediated nucleotide metabolism plays a key role in facilitating radiation resistance in pancreatic cancer and targeted effectively through glycolytic inhibition. Clin Cancer Res; 23(19); 5881-91. ©2017 AACR.


Assuntos
Dano ao DNA/efeitos da radiação , Mucina-1/genética , Neoplasias Pancreáticas/radioterapia , Tolerância a Radiação/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glicólise/efeitos da radiação , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Ther ; 16(9): 1819-1830, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615298

RESUMO

Taxane-based therapy provides a survival benefit in patients with metastatic prostate cancer, yet the median survival is less than 20 months in this setting due in part to taxane-associated resistance. Innovative strategies are required to overcome chemoresistance for improved patient survival. Here, NanoOrl, a new experimental nanoparticle formulation of the FDA-approved drug, orlistat, was investigated for its cytotoxicity in taxane-resistant prostate cancer utilizing two established taxane-resistant (TxR) cell lines. Orlistat is a weight loss drug that inhibits gastric lipases, but is also a potent inhibitor of fatty acid synthase (FASN), which is overexpressed in many types of cancer. NanoOrl was also investigated for its potential to synergize with taxanes in TxR cell lines. Both orlistat and NanoOrl synergistically inhibited cell viability when combined with paclitaxel, docetaxel, and cabazitaxel in PC3-TxR and DU145-TxR cells, yet these combinations were also additive in parental lines. We observed synergistic levels of apoptosis in TxR cells treated with NanoOrl and docetaxel in combination. Mechanistically, the synergy between orlistat and taxanes was independent of effects on the P-glycoprotein multidrug resistance protein, as determined by an efflux activity assay. On the other hand, immunoblot and immunofluorescence staining with an anti-detyrosinated tubulin antibody demonstrated that enhanced microtubule stability was induced by combined NanoOrl and docetaxel treatment in TxR cells. Furthermore, TxR cells exhibited higher lipid synthesis, as demonstrated by 14C-choline incorporation that was abrogated by NanoOrl. These results provide a strong rationale to assess the translational potential of NanoOrl to overcome taxane resistance. Mol Cancer Ther; 16(9); 1819-30. ©2017 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lactonas/administração & dosagem , Microtúbulos/metabolismo , Nanopartículas , Taxoides/farmacologia , Moduladores de Tubulina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Sinergismo Farmacológico , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Masculino , Orlistate , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Estabilidade Proteica/efeitos dos fármacos
9.
Biochim Biophys Acta Rev Cancer ; 1868(1): 69-92, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28249796

RESUMO

Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.


Assuntos
Neoplasias Pancreáticas/radioterapia , Tolerância a Radiação/fisiologia , Animais , Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Humanos , Microambiente Tumoral/efeitos da radiação
10.
Theranostics ; 6(13): 2314-2328, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877237

RESUMO

Tumor tissue that remains undetected at the primary surgical site can cause tumor recurrence, repeat surgery, and treatment strategy alterations that impose a significant patient and healthcare burden. Intraoperative near infrared fluorescence (NIRF) imaging is one potential method to identify remaining tumor by visualization of NIR fluorophores that are preferentially localized to the tumor. This requires development of fluorophores that consistently identify tumor tissue in different patients and tumor types. In this study we examined a panel of NIRF contrast agents consisting of polymeric nanoparticle (NP) formulations derived from hyaluronic acid (HA), with either physically entrapped indocyanine green (ICG) or covalently conjugated Cy7.5. Using orthotopic human breast cancer MDA-MB-231 xenografts in nude mice we identified two lead formulations. One, NanoICGPBA, with physicochemically entrapped ICG, showed 2.3-fold greater tumor contrast than ICG alone at 24 h (p < 0.01), and another, NanoCy7.5100-H, with covalently conjugated Cy7.5, showed 74-fold greater tumor contrast than Cy7.5 alone at 24 h (p < 0.0001). These two lead formulations were then tested in immune competent BALB/c mice bearing orthotopic 4T1 breast cancer tumors. NanoICGPBA showed 2.2-fold greater contrast than ICG alone (p < 0.0001), and NanoCy7.5100-H showed 14.8-fold greater contrast than Cy7.5 alone (p < 0.0001). Furthermore, both NanoICGPBA and NanoCy7.5100-H provided strong tumor enhancement using image-guided surgery in mice bearing 4T1 tumors. These studies demonstrate the efficacy of a panel of HA-derived NPs in delineating tumors in vivo, and identifies promising formulations that can be used for future in vivo tumor removal efficacy studies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Ácido Hialurônico/administração & dosagem , Raios Infravermelhos , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Animais , Neoplasias da Mama/cirurgia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus
11.
Oncotarget ; 6(38): 41146-61, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26510913

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models.


Assuntos
Caquexia/prevenção & controle , Metaboloma/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Silimarina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antioxidantes/farmacologia , Caquexia/etiologia , Caquexia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Glicólise/efeitos dos fármacos , Humanos , Immunoblotting , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos Nus , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silibina , Carga Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Oncotarget ; 6(22): 19118-31, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26046375

RESUMO

MUC16, a transmembrane mucin, facilitates pancreatic adenocarcinoma progression and metastasis. In the current studies, we observed that MUC16 knockdown pancreatic cancer cells exhibit reduced glucose uptake and lactate secretion along with reduced migration and invasion potential, which can be restored by supplementing the culture media with lactate, an end product of aerobic glycolysis. MUC16 knockdown leads to inhibition of mTOR activity and reduced expression of its downstream target c-MYC, a key player in cellular growth, proliferation and metabolism. Ectopic expression of c-MYC in MUC16 knockdown pancreatic cancer cells restores the altered cellular physiology. Our LC-MS/MS based metabolomics studies indicate global metabolic alterations in MUC16 knockdown pancreatic cancer cells, as compared to the controls. Specifically, glycolytic and nucleotide metabolite pools were significantly decreased. We observed similar metabolic alterations that correlated with MUC16 expression in primary tumor tissue specimens from human pancreatic adenocarcinoma cancer patients. Overall, our results demonstrate that MUC16 plays an important role in metabolic reprogramming of pancreatic cancer cells by increasing glycolysis and enhancing motility and invasiveness.


Assuntos
Antígeno Ca-125/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antígeno Ca-125/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Proteínas de Membrana/genética , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Serina-Treonina Quinases TOR/genética , Transfecção
13.
PLoS One ; 8(11): e80580, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278292

RESUMO

Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a Kras(G12D);Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of Kras(G12D);Trp53(R172H);Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. Kras(G12D) mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.


Assuntos
Adenocarcinoma/patologia , Neoplasias Pancreáticas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/terapia , Animais , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Primers do DNA , Camundongos , Microscopia Confocal , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Reação em Cadeia da Polimerase em Tempo Real
14.
Arch Pathol Lab Med ; 137(4): 546-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23544943

RESUMO

CONTEXT: Diagnoses rendered as atypical/suspicious for malignancy on fine-needle aspiration (FNA) of pancreatic mass lesions range from 2% to 29% in various studies. We have identified the expression of 3 genes, MUC4, MUC16, and NGAL that are highly upregulated in pancreatic adenocarcinoma. In this study, we analyzed the expression of these markers in FNA samples to determine whether they could improve sensitivity and specificity. OBJECTIVE: To evaluate the utility of MUC4, MUC16, and NGAL in the evaluation of pancreatic FNA specimens. DESIGN: Records of pancreatic FNAs performed during 10 consecutive years were reviewed. Unstained sections from corresponding cell blocks were immunostained for MUC4, MUC16, and NGAL (polyclonal). Immunostaining was assessed using the H-score (range, 0-3). Any case with an H-score of >0.5 was considered positive. RESULTS: Cases were classified using cytomorphologic criteria as adenocarcinoma (31 of 64; 48.4%), benign (17 of 64; 26.6%), and atypical/suspicious (16 of 64; 25%). On follow-up, all cases (100%; 31 of 31) diagnosed as carcinoma on cytology were confirmed on biopsy/resection samples or by clinical follow-up (such as unresectable disease). Of the cases diagnosed as atypical/suspicious, 69% (11 of 16) were found to be positive for adenocarcinoma and 31% (5 of 16) were benign on subsequent follow-up. Overall sensitivity and specificity, respectively, for the various markers for the detection of pancreatic adenocarcinoma were as follows: MUC4 (74% and 100%), MUC16 (62.9% and 100%), and NGAL (61.3% and 58.8%). In cases that were atypical/suspicious on cytology, expression of MUC4 and MUC16 was 100% specific for carcinoma with sensitivities of 63.6% and 66.7%, respectively. CONCLUSION: Immunocytochemistry for MUC4 and MUC16 appears to be a useful adjunct in the classification of pancreatic FNA samples, especially in cases that are equivocal (atypical/suspicious) for adenocarcinoma on cytomorphologic assessment.


Assuntos
Adenocarcinoma/patologia , Antígeno Ca-125/metabolismo , Citodiagnóstico/métodos , Imuno-Histoquímica/métodos , Proteínas de Membrana/metabolismo , Mucina-4/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Biópsia por Agulha Fina , Humanos , Neoplasias Pancreáticas/metabolismo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Regulação para Cima
15.
Cancer Lett ; 336(2): 270-80, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23523869

RESUMO

There is an urgent need to develop alternative therapies against lethal pancreatic cancer (PC). Ocimum sanctum ("Holy Basil") has been used for thousands of years in traditional Indian medicine, but its anti-tumorigenic effect remains largely unexplored. Here, we show that extracts of O. sanctum leaves inhibit the proliferation, migration, invasion, and induce apoptosis of PC cells in vitro. The expression of genes that promote the proliferation, migration and invasion of PC cells including activated ERK-1/2, FAK, and p65 (subunit of NF-κB), was downregulated in PC cells after O. sanctum treatment. Intraperitoneal injections of the aqueous extract significantly inhibited the growth of orthotopically transplanted PC cells in vivo (p<0.05). Genes that inhibit metastasis (E-cadherin) and induce apoptosis (BAD) were significantly upregulated in tumors isolated from mice treated with O. sanctum extracts, while genes that promote survival (Bcl-2 and Bcl-xL) and chemo/radiation resistance (AURKA, Chk1 and Survivin) were downregulated. Overall, our study suggests that leaves of O. sanctum could be a potential source of novel anticancer compounds in the future.


Assuntos
Ocimum/química , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Folhas de Planta/química , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Curr Pharm Des ; 18(17): 2472-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22372499

RESUMO

The prognosis of pancreatic cancer (PC) patients is very poor with a five-year survival of less than 5%. One of the major challenges in developing new therapies for PC is the lack of expression of specific markers by pancreatic tumor cells. Mucins are heavily Oglycosylated proteins characterized by the presence of short stretches of amino acid sequences repeated several times in tandem. The expression of several mucins including MUC1, MUC4, MUC5AC, and MUC16 is strongly upregulated in PC. Recent studies have also demonstrated a link between the aberrant expression and differential overexpression of mucin glycoproteins to the initiation, progression, and poor prognosis of the disease. These studies have led to increasing recognition of mucins as potential diagnostic markers and therapeutic targets in PC. In this focused review we present an overview of the therapies targeting mucins in PC, including immunotherapy (i.e. vaccines, antibodies, and radioimmunoconjugates), gene therapy, and other novel therapeutic strategies.


Assuntos
Mucinas/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Vacinas Anticâncer , Resistencia a Medicamentos Antineoplásicos , Terapia Genética , Humanos , Imunoterapia , Terapia de Alvo Molecular , Mucinas/genética , Mucinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia
17.
Am J Surg Pathol ; 35(11): 1615-25, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21997683

RESUMO

Ossifying fibromyxoid tumor (OFMTs) of soft parts is a rare soft tissue and bone tumor of borderline malignancy displaying an uncertain line of differentiation. The existence of fully malignant OFMT is controversial. To better understand the natural history and line of differentiation taken by OFMT, we studied 46 cases by light microscopic, immunohistochemical (IHC), genomic, proteomic, and fluorescence in situ hybridization (FISH) methods. Cases were classified according to the 2003 Folpe and Weiss system. Clinical and follow-up information was obtained. IHC for S-100 protein, desmin, epithelial membrane antigen (EMA), cytokeratins, smooth muscle actin (SMA), INI-1, neurofilament protein (NFP), CD56d excitatory amino acid transporter-4 (EAAT4), and MUC4 was performed on formalin-fixed, paraffin-embedded (FFPE) tissues. Gene expression profiling and proteomic studies were conducted on FFPE tissues from 13 and 5 cases, respectively. FISH for INI-1 was performed on 10 cases. The 46 tumors arose in 29 men and 17 women (median age, 52 y; range 39 to 63 y) and involved the proximal (N=17) and distal extremities (N=13), head and neck (N=9), and trunk (N=5). Median tumor size was 5.4 cm (range, 1.0 to 21.0 cm). Cases were classified as typical OFMT (26 of 46, 57%), atypical OFMT (5 of 46, 11%), and malignant OFMT (15 of 46 cases, 32%). Clinical follow-up (27 cases, median 55 months' duration) showed all patients with typical and atypical OFMT to be alive without disease. Adverse events, including 3 local recurrences, 3 metastases, and 3 deaths, were seen only in malignant OFMT. IHC results were as follows: S-100 protein (30 of 41, 73%), desmin (15 of 39, 38%), cytokeratin (4 of 35, 11%), EMA (5 of 32, 16%), SMA (2 of 34, 6%), INI-1 (lost in mosaic pattern in 14 of 19, 74%), EAAT4 (31 of 39, 80%), MUC4 (3 of 14, 21%), NFP (8 of 10, 80%) and CD56 (6 of 14, 43%). Gene expression profiling showed typical and malignant OFMTs to cluster together, distinct from schwannian tumors. Proteomic study showed expression of various collagens, S-100 protein, and neuron-related proteins. FISH showed INI-1 deletion in 5 of 7 (71%) cases. We conclude that malignant OFMTs exist and may be recognized by the previously proposed criteria of Folpe and Weiss. Expression of neuron-related markers, in addition to Schwann cell and cartilage-associated markers, suggests a "scrambled" phenotype in OFMTs. Loss of INI-1 or other genes on 22q is likely important in the pathogenesis of these rare tumors.


Assuntos
Biomarcadores Tumorais , Fibroma Ossificante , Regulação Neoplásica da Expressão Gênica , Genômica , Proteômica , Neoplasias de Tecidos Moles , Adulto , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biópsia , Cromatografia Líquida , Feminino , Fibroma Ossificante/química , Fibroma Ossificante/genética , Fibroma Ossificante/patologia , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos , Neoplasias de Tecidos Moles/química , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA