Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1382638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715601

RESUMO

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Assuntos
Linfócitos T CD4-Positivos , Ligante de CD40 , Pulmão , Células B de Memória , Streptococcus pneumoniae , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Ligante de CD40/metabolismo , Ligante de CD40/imunologia , Quimiocina CXCL13/metabolismo , Modelos Animais de Doenças , Memória Imunológica , Pulmão/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/imunologia , Transdução de Sinais , Streptococcus pneumoniae/imunologia
2.
Nat Commun ; 12(1): 5834, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611166

RESUMO

Barrier tissues are populated by functionally plastic CD4+ resident memory T (TRM) cells. Whether the barrier epithelium regulates CD4+ TRM cell locations, plasticity and activities remains unclear. Here we report that lung epithelial cells, including distinct surfactant protein C (SPC)lowMHChigh epithelial cells, function as anatomically-segregated and temporally-dynamic antigen presenting cells. In vivo ablation of lung epithelial MHC-II results in altered localization of CD4+ TRM cells. Recurrent encounters with cognate antigen in the absence of epithelial MHC-II leads CD4+ TRM cells to co-express several classically antagonistic lineage-defining transcription factors, changes their cytokine profiles, and results in dysregulated barrier immunity. In addition, lung epithelial MHC-II is needed for surface expression of PD-L1, which engages its ligand PD-1 to constrain lung CD4+ TRM cell phenotypes. Thus, we establish epithelial antigen presentation as a critical regulator of CD4+ TRM cell function and identify epithelial-CD4+ TRM cell immune interactions as core elements of barrier immunity.


Assuntos
Apresentação de Antígeno/fisiologia , Células Epiteliais/metabolismo , Pulmão/citologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Citometria de Fluxo , Imunofluorescência , Leucócitos/citologia , Leucócitos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA