Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902519

RESUMO

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.

2.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337035

RESUMO

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Assuntos
COVID-19 , Infecções Respiratórias , Vacinas , Cricetinae , Animais , Camundongos , Linfócitos T CD8-Positivos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Pan troglodytes
3.
Res Sq ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37790551

RESUMO

Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 beta variant, leads to CNS infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes post-acute cognitive deficits. Breakthrough infection after vaccination with a low dose of adenoviral vectored Spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis, and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new murine model that is prevented by vaccination.

4.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205450

RESUMO

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

5.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700605

RESUMO

Annual influenza outbreaks are associated with significant morbidity and mortality worldwide despite the availability of seasonal vaccines. Influenza pathogenesis depends on the manipulation of host cell signaling to promote virus replication. Ceramide is a sphingosine-derived lipid that regulates diverse cellular processes. Studies highlighted the differential role of ceramide de novo biosynthesis on the propagation of various viruses. Whether ceramide plays, a role in influenza virus replication is not known. In this study, we assessed the potential interplay between the influenza A (IAV) and ceramide biosynthesis pathways. The accumulation of ceramide in human lung epithelial cells infected with influenza A/H1N1 virus strains was evaluated using thin-layer chromatography and/or confocal microscopy. Virus replication was assessed upon the regulation of the de novo ceramide biosynthesis pathway. A significant increase in ceramide accumulation was observed in cells infected with IAV in a dose- and time-dependent manner. Inoculating the cells with UV-inactivated IAV did not result in ceramide accumulation in the cells, suggesting that the induction of ceramide required an active virus replication. Inhibiting de novo ceramide significantly decreased ceramide accumulation and enhanced virus replication. The addition of exogenous C6-ceramide prior to infection mediated an increase in cellular ceramide levels and significantly attenuated IAV replication and reduced viral titers (≈1 log10 PFU/ml unit). Therefore, our data demonstrate that ceramide accumulation through de novo biosynthesis pathway plays a protective and antiviral role against IAV infection. These findings propose new avenues for development of antiviral molecules and strategies.IMPORTANCE Understanding the effect of sphingolipid metabolism on viral pathogenesis provide important insights into the development of therapeutic strategies against microbial infections. In this study, we demonstrate a critical role of ceramide during influenza A virus infection. We demonstrate that ceramide produced through de novo biosynthesis possess an antiviral role. These observations unlock new opportunities for the development of novel antiviral therapies against influenza.


Assuntos
Antivirais/farmacologia , Ceramidas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Células Epiteliais/virologia , Humanos , Influenza Humana/tratamento farmacológico , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico
6.
J Med Virol ; 91(7): 1191-1201, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763464

RESUMO

BACKGROUND: Patients with pediatric cancer have a higher risk of morbidity and mortality because of respiratory viral infections than other patient populations. OBJECTIVES: To investigate the causative viruses of respiratory infections and their burden among patients with pediatric cancer in Lebanon. STUDY DESIGN: Nasopharyngeal swabs along with clinical and demographic data were collected from patients with pediatric cancer presenting febrile episodes with upper respiratory tract symptoms. Total nucleic acid was extracted from specimens followed by the real-time PCR analysis targeting 14 respiratory viruses to estimate the frequency of infections. RESULTS: We obtained 89 nasopharyngeal swabs from patients with pediatric cancer (mean age, 5.8 ± 4.2 years). Real-time PCR confirmed viral infection in 77 swabs (86.5%). Among these, 151 respiratory viruses were detected. Several viruses cocirculated within the same period; respiratory syncytial virus (RSV) being the most common (45.45%), followed by parainfluenza virus (PIV; 26%), influenza type B (26%), human metapneumovirus (24.6%), and human coronavirus (HCoV; 24.6%). Coinfections were detected in 55% of the subjects, and most of them involved RSV with one or more other viruses. A strong correlation was found between PIV, Flu (influenza of any type), RSV, and HCoV with the incidence of coinfections. RSV was associated with lower respiratory tract infections, nasal congestion, bronchitis, and bacteremia. HCoV was associated with bronchiolitis; rhinovirus was associated with hospital admission. CONCLUSION: Patients with pediatric cancer have a high burden of respiratory viral infections and a high incidence of coinfections. Molecular diagnostics can improve management of febrile episodes and reduce antibiotic use.


Assuntos
Neoplasias/complicações , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Viroses/epidemiologia , Vírus/isolamento & purificação , Doença Aguda/epidemiologia , Criança , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Incidência , Lactente , Recém-Nascido , Masculino , Neoplasias/virologia , Prevalência , Vírus/classificação
7.
Front Pharmacol ; 7: 397, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27881962

RESUMO

Background: Cardiovascular diseases are the leading causes of morbidity and mortality worldwide. Cigarette smoking remains a global health epidemic with associated detrimental effects on the cardiovascular system. In this work, we investigated the effects of cigarette smoke exposure on cardiovascular system in an animal model. The study then evaluated the effects of antioxidants (AO), represented by pomegranate juice, on cigarette smoke induced cardiovascular injury. This study aims at evaluating the effect of pomegranate juice supplementation on the cardiovascular system of an experimental rat model of smoke exposure. Methods: Adult rats were divided into four different groups: Control, Cigarette smoking (CS), AO, and CS + AO. Cigarette smoke exposure was for 4 weeks (5 days of exposure/week) and AO group received pomegranate juice while other groups received placebo. Assessment of cardiovascular injury was documented by assessing different parameters of cardiovascular injury mediators including: (1) cardiac hypertrophy, (2) oxidative stress, (3) expression of inflammatory markers, (4) expression of Bradykinin receptor 1 (Bdkrb1), Bradykinin receptor 2 (Bdkrb2), and (5) altered expression of fibrotic/atherogenic markers [(Fibronectin (Fn1) and leptin receptor (ObR))]. Results: Data from this work demonstrated that cigarette smoke exposure induced cardiac hypertrophy, which was reduced upon administration of pomegranate in CS + AO group. Cigarette smoke exposure was associated with elevation in oxidative stress, significant increase in the expression of IL-1ß, TNFα, Fn1, and ObR in rat's aorta. In addition, an increase in aortic calcification was observed after 1 month of cigarette smoke exposure. Furthermore, cigarette smoke induced a significant up regulation in Bdkrb1 expression level. Finally, pomegranate supplementation exhibited cardiovascular protection assessed by the above findings and partly contributed to ameliorating cardiac hypertrophy in cigarette smoke exposed animals. Conclusion: Findings from this work showed that cigarette smoking exposure is associated with significant cardiovascular pathology such as cardiac hypertrophy, inflammation, pro-fibrotic, and atherogenic markers and aortic calcification in an animal model as assessed 1 month post exposure. Antioxidant supplementation prevented cardiac hypertrophy and attenuated indicators of atherosclerosis markers associated with cigarette smoke exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA