Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 213: 22-29, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37142118

RESUMO

Indoxyl sulfate (IS) is a uremic toxin produced by the gut microbiota that commonly accumulates in patients with chronic kidney disease (CKD) and can be harmful. Resveratrol is a polyphenol with properties that attenuate oxidative stress and inflammation. This study aims to evaluate the effect of resveratrol against the damage caused by IS in RAW 264.7 murine macrophages. Cells were treated with 0, 250, 500 and 1000 µmol/L of IS, in the presence of 50 µmol/L of resveratrol. The mRNA and protein expressions of erythroid-related nuclear factor 2 (Nrf2) and nuclear factor kappa-B (NF-κB) were measured using rt-PCR and Western blot analysis, respectively. Malondialdehyde (MDA) and reactive oxygen species (ROS) levels were also analyzed. As a result, it was demonstrated that resveratrol induces the activation of the Nrf2 pathway that enhances cytoprotective response. IS upregulated the NF-κB expression and downregulated the Nrf2 expression. In contrast, resveratrol treatment significantly reduced the MDA and ROS production and inhibited the IS-induced expression of NF-κB in macrophage-like RAW 264.7. In conclusion, resveratrol can mitigate inflammation and oxidative stress caused by uremic toxins produced by the gut microbiota, such as IS.


Assuntos
Indicã , NF-kappa B , Humanos , Camundongos , Animais , Resveratrol/farmacologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Indicã/toxicidade , Toxinas Urêmicas , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Macrófagos/metabolismo
2.
J Ren Nutr ; 32(2): 234-242, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33888408

RESUMO

OBJECTIVE: Imbalance between anabolism and catabolism is linked to cachexia and protein-energy wasting (PEW), especially in frail populations such as patients with chronic kidney disease. PEW is responsible of poor outcomes with increased morbidity and mortality. Several causes are involved in PEW such as insulin resistance, acidosis, or hyperparathyroidism. Natriuretic peptides (NPs) have recently been described as activators of resting energy expenditure through the induction of browning of white adipose tissue in rodents with chronic kidney disease. The present study was therefore implemented to investigate whether NPs could be associated with PEW criteria and predict clinical outcomes. METHODS: We quantified serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) in a prospective cohort of 231 patients undergoing maintenance hemodialysis and atrial natriuretic peptide in a subgroup of 35 patients. Body composition parameters were measured with bioimpedance spectroscopy. RESULTS: NT-proBNP was inversely associated with serum albumin, prealbumin, and body mass index and, conversely, positively associated with age and C-reactive protein. NT-proBNP as well as atrial natriuretic peptide were significantly higher in patients with PEW criteria. NT-proBNP was negatively associated with body fat mass. In multiple linear regression, NT-proBNP remained associated with body mass index. Kaplan-Meier analysis revealed a significant correlation between serum NT-proBNP concentrations and all-cause mortality and cardiovascular events. This association remained significant after multivariable Cox regression models adjusted for demographic factors and cardiovascular risk factors. CONCLUSION: Accumulation of NPs seems to be associated with poor nutritional status and reduced survival among hemodialysis patients. Further studies are needed to confirm this association using resting energy expenditure measurement and adipose tissue biopsy.


Assuntos
Fator Natriurético Atrial , Insuficiência Renal Crônica , Caquexia , Feminino , Humanos , Masculino , Peptídeos Natriuréticos , Estudos Prospectivos , Diálise Renal , Insuficiência Renal Crônica/terapia
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638926

RESUMO

Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.


Assuntos
Diabetes Gestacional/tratamento farmacológico , Inositol/farmacologia , Síndrome do Ovário Policístico/tratamento farmacológico , Testosterona/metabolismo , Células Tecais/efeitos dos fármacos , Diabetes Gestacional/metabolismo , Feminino , Humanos , Inositol/química , Inositol/metabolismo , Estrutura Molecular , Síndrome do Ovário Policístico/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Células Tecais/metabolismo
4.
Kidney Int ; 98(3): 663-672, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32739210

RESUMO

Protein energy wasting is a common feature of patients with chronic kidney disease (CKD) and is associated with poor outcomes. Protein energy wasting and cachexia, a severe form of protein energy wasting, are characterized by increased resting energy expenditure but the underlying mechanisms are unclear. Browning corresponds to the activation of inducible brown adipocytes in white adipose tissue and occurs in states of cachexia associated with hypermetabolic disease such as cancer. Here we tested the hypothesis that CKD-associated protein energy wasting could result from browning activation as a direct effect of the uremic environment on adipocytes. In a murine model of CKD (5/6 nephrectomy), there was increased resting energy expenditure, expression of uncoupling protein 1 (a thermogenic protein uncoupling oxidative phosphorylation in mitochondria) and citrate synthase activity (a proxy of mitochondrial density in white adipose tissue). Mice with CKD also exhibited increased levels of atrial natriuretic peptide, a well known activator of browning. The incubation of primary adipose cells with plasma from patients receiving dialysis treatment and having signs of protein energy wasting led to an increased synthesis of uncoupling protein 1. Similarly, primary adipose cells exposed to atrial natriuretic peptide at concentrations relevant of CKD led to a significant increase of uncoupling protein 1 content. Thus, accumulation of cardiac natriuretic peptides during CKD could contribute to the browning of white adipose tissue and protein energy wasting.


Assuntos
Caquexia , Insuficiência Renal Crônica , Tecido Adiposo Branco/metabolismo , Animais , Caquexia/metabolismo , Metabolismo Energético , Humanos , Camundongos , Peptídeos Natriuréticos/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteína Desacopladora 1/metabolismo
5.
Trends Endocrinol Metab ; 31(6): 435-447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396844

RESUMO

This review details the physiologic roles of two insulin sensitizers, myo-inositol (MI) and d-chiro-inositol (DCI). In the human ovary, MI is a second messenger of follicle-stimulating hormone (FSH) and DCI is an aromatase inhibitor. These activities allow a treatment for polycystic ovary syndrome (PCOS) to be defined based on the combined administration of MI and DCI, where the best MI:DCI ratio is 40:1. Moreover, MI enhances the effect of metformin and clomiphene on the fertility of PCOS women seeking pregnancy. As impaired intestinal transport may lead to unsuccessful inositol treatment, we also discuss new data on the use of alpha-lactalbumin to boost inositol absorption. Overall, the physiological activities of MI and DCI dictate the dosages and timing of inositol supplementation in the treatment of PCOS.


Assuntos
Inositol/farmacologia , Inositol/fisiologia , Síndrome do Ovário Policístico/tratamento farmacológico , Complexo Vitamínico B/farmacologia , Animais , Feminino , Humanos , Inositol/administração & dosagem , Complexo Vitamínico B/administração & dosagem
6.
Expert Opin Drug Metab Toxicol ; 16(3): 255-274, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32129111

RESUMO

Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Prova Pericial , Inositol/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Reprodução/efeitos dos fármacos , Complexo Vitamínico B/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Prova Pericial/tendências , Feminino , Humanos , Inositol/farmacocinética , Síndrome do Ovário Policístico/metabolismo , Reprodução/fisiologia , Complexo Vitamínico B/farmacocinética
7.
Toxins (Basel) ; 11(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683880

RESUMO

Gut microbiota-dependent Trimethylamine-N-oxide (TMAO) has been reported to be strongly linked to renal function and to increased cardiovascular events in the general population and in Chronic Kidney Disease (CKD) patients. Considering the lack of data assessing renal handling of TMAO, we conducted this study to explore renal excretion and mechanisms of accumulation of TMAO during CKD. We prospectively measured glomerular filtration rate (mGFR) with gold standard methods and plasma concentrations of trimethylamine (TMA), TMAO, choline, betaine, and carnitine by LC-MS/MS in 124 controls, CKD, and hemodialysis (HD) patients. Renal clearance of each metabolite was assessed in a sub-group of 32 patients. Plasma TMAO was inversely correlated with mGFR (r2 = 0.388, p < 0.001), confirming elevation of TMAO plasma levels in CKD. TMAO clearances were not significantly different from mGFR, with a mean ± SD TMAO fractional excretion of 105% ± 32%. This suggests a complete renal excretion of TMAO by glomerular filtration with a negligible participation of tubular secretion or reabsorption, during all stages of CKD. Moreover, TMAO was effectively removed within 4 h of hemodiafiltration, showing a higher fractional reduction value than that of urea (84.9% ± 6.5% vs. 79.2% ± 5.7%, p = 0.04). This study reports a strong correlation between plasma TMAO levels and mGFR, in CKD, that can be mainly related to a decrease in TMAO glomerular filtration. Clearance data did not support a significant role for tubular secretion in TMAO renal elimination.


Assuntos
Taxa de Filtração Glomerular , Metilaminas/sangue , Diálise Renal , Insuficiência Renal Crônica/sangue , Adulto , Betaína/sangue , Colina/sangue , Creatinina/sangue , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal Crônica/terapia
8.
Kidney Int ; 94(5): 983-992, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30348306

RESUMO

Wasting has been associated with increased cardiovascular and all-cause mortality in chronic kidney disease (CKD). We investigated whether serum zinc-alpha2-glycoprotein (ZAG), a potent cachectic and lipid-mobilizing factor that is increased in patients with CKD, predicts clinical outcomes in patients on chronic hemodialysis. We quantified serum ZAG at baseline in a prospective cohort of 252 patients undergoing maintenance hemodialysis. Serum ZAG concentrations were inversely associated with serum albumin, creatinine, and triglycerides and, conversely, positively associated with age. Although ZAG is strongly linked to protein energy wasting (PEW) in patients with cancer, higher ZAG concentrations were not associated with PEW in our cohort. During a mean study follow-up of 954 days, 49 patients died and 62 patients experienced a cardiovascular event. Kaplan-Meier analysis revealed a significant correlation between serum ZAG concentrations and all-cause mortality and cardiovascular events. In separate multivariable Cox regression models, serum ZAG concentrations remained significantly associated with all-cause mortality and cardiovascular events after adjustment for demographic factors (age, sex, and dialysis vintage), metabolic parameters (serum albumin, prealbumin, triglycerides, cholesterol, normalized protein catabolic rate, and body mass index), and cardiovascular risk factors (diabetes, dyslipidemia, history of cardiovascular disease, smoking, and diuretic use as a proxy of residual renal function). Thus, serum ZAG appears to be a strong and independent predictor of mortality and cardiovascular events in patients with end-stage renal disease. Further studies are necessary to confirm this association and to elucidate the underlying mechanisms.


Assuntos
Diálise Renal/mortalidade , Insuficiência Renal Crônica/sangue , Proteínas de Plasma Seminal/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Adulto Jovem , Glicoproteína Zn-alfa-2
9.
Int Urol Nephrol ; 50(2): 347-354, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151180

RESUMO

PURPOSE: Uremic toxins produced by gut microbiota (indoxyl sulfate-IS, p-cresyl sulfate-p-CS, and indole-3-acetic acid-IAA) accumulate in hemodialysis (HD) patients and exhibit potent inflammatory effects. However, the impact of these toxins on nuclear E2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) expression in HD patients remains poorly defined. The aim of this study was to evaluate the association between uremic toxins and Nrf2/NF-κB expression in vitro (RAW 264.7 macrophage-like cells) and in peripheral blood mononuclear cells from HD patients. METHODS: Uremic toxins, C-reactive protein (CRP), interleukin-6 (IL-6) and malondialdehyde (MDA) levels were measured in fifteen HD patients and nine healthy individuals. RAW 264.7 macrophage-like cells were incubated with IS, as a prototype of protein-bound uremic toxin. Nrf2 and NF-κB expressions were analyzed by RT-qPCR. RESULTS: HD patients presented high levels of inflammatory markers, MDA and uremic toxins. In addition, they presented high NF-κB and low Nrf2 expression. Uremic toxins were positively correlated with NF-κB expression (IS, ρ = 0.58, p < 0.003; p-CS, ρ = 0.71, p < 0.001; IAA, ρ = 0.62, p < 0.001) and negatively with Nrf2 (IS, ρ = - 0.48, p = 0.01; p-CS, ρ = - 0.46, p < 0.02). Uremic toxins also exhibited positive correlations with CRP and MDA levels. Multivariate analysis revealed that p-CS is a determinant factor of NF-κB expression. In RAW 264.7 culture, NF-κB mRNA expression was stimulated by IS, while Nrf2 was downregulated. CONCLUSIONS: Thus, uremic toxins may stimulate NF-κB mRNA and decrease Nrf2 expression in HD patients and, consequently, trigger inflammation and oxidative stress.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Insuficiência Renal Crônica , Uremia , Idoso , Animais , Técnicas de Cultura de Células , Feminino , Humanos , Inflamação/sangue , Inflamação/metabolismo , Interleucina-6/sangue , Masculino , Malondialdeído/sangue , Camundongos , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Transdução de Sinais , Uremia/etiologia , Uremia/metabolismo
10.
J Nutr ; 147(4): 506-513, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250190

RESUMO

Background: Obesity is associated with hyperleptinemia and endothelial dysfunction. Hyperleptinemia has been reported to induce both oxidative stress and inflammation by increasing reactive oxygen species production.Objective: The objective of this study was to determine the effects of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] against leptin-induced oxidative stress and inflammation in human endothelial cells.Methods: Small interfering RNA (siRNA) were used to knock down the expression of vitamin D receptor (VDR) in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 4 h with physiologic (10-10 M) or supraphysiologic (10-7 M) concentrations of 1,25(OH)2D3 and exposed to leptin (10 ng/mL). Superoxide anion production and translocation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and nuclear transcription factor κB (NF-κB) subunit p65 to the nucleus and the activation of their target genes were quantified.Results: Pretreatment of HUVECs with 1,25(OH)2D3 prevented the leptin-induced increase in superoxide anion production (P < 0.05). Pretreatment with 1,25(OH)2D3 further increased NRF2 translocation to the nucleus (by 3-fold; P < 0.05) and increased mRNA expression of superoxide dismutase 2 (SOD2; by 2-fold), glutathione peroxidase (GPX; by 3-fold), NAD(P)H dehydrogenase (quinone) 1 (NQO1; by 4-fold), and heme oxygenase 1 (HMOX1; by 2-fold) (P < 0.05). Leptin doubled the translocation of NF-κB (P < 0.05) to the nucleus and increased (P < 0.05) the upregulation of vascular inflammatory mediators such as monocyte chemoattractant protein 1 (MCP1; by 1-fold), transforming growth factor ß (TGF ß by 1-fold), and vascular cell adhesion molecule 1 (VCAM1; by 4-fold) (P < 0.05), which were prevented (P < 0.05) by pretreatment with 1,25(OH)2D3 Protective effects of 1,25(OH)2D3 were confirmed to be VDR dependent by using VDR siRNA.Conclusion: Pretreatment with 1,25(OH)2D3 in the presence of a high concentration of leptin has a beneficial effect on HUVECs through the regulation of mediators of antioxidant activity and inflammation.


Assuntos
Calcitriol/farmacologia , Células Endoteliais/metabolismo , Inflamação/induzido quimicamente , Leptina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes , Calcitriol/administração & dosagem , Sobrevivência Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais , Superóxidos/metabolismo
11.
Free Radic Res ; 50(3): 337-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26617268

RESUMO

Inflammation and oxidative stress are common features of patients with chronic kidney disease (CKD) and many uremic solutes retained in these patients could be involved in these processes, among which protein-bound solutes such as indoxyl sulfate (IS). White adipose tissue recently gained attention as an important source of inflammation and oxidative stress. To examine the effect of IS on adipocytes, 3T3-L1 adipose cells were incubated with IS to mimic the conditions encountered in uremic patients. Incubation of adipose cells with IS increased reactive oxygen species production generated mainly through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase since it was prevented by the NADPH oxidase inhibitor apocynin. Exposure to IS furthermore exacerbated the secretion of tumor necrosis factor-α and interleukin-6 by adipose cells. This inflammatory response was prevented by NADPH oxidase inhibition pinpointing the pivotal role of intracellular oxidative stress. IS induces adipocyte perturbation and promotes inflammatory state mainly through induction of oxidative stress. IS, a uremic toxin, accumulates in CKD patients could, therefore, be an important mediator of adipocyte dysfunction in these patients.


Assuntos
Adipócitos/metabolismo , Indicã/farmacologia , Inflamação , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/metabolismo , Uremia/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Animais , Interleucina-6/metabolismo , Camundongos , NADPH Oxidases/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Toxinas Biológicas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Uremia/etiologia , Uremia/patologia
12.
Diabetes ; 64(3): 1011-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25277399

RESUMO

A growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases.


Assuntos
Resistência à Insulina/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ozônio/toxicidade , Acetilcisteína/farmacologia , Animais , Antracenos/farmacologia , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Fenilbutiratos/farmacologia , Ratos
13.
Biochimie ; 105: 12-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25010649

RESUMO

White adipose tissue secretes a large variety of compounds named adipokines amongst which, leptin exhibits pleiotropic metabolic actions. Leptin is an anorexigenic hormone, secreted in proportion of fat mass, with additional effects on the regulation of inflammation, cardiovascular system, immunity, hematopoiesis and bone metabolism. Chronic kidney disease (CKD) is characterized by an increase of plasma leptin concentration that may be explained by a lack of renal clearance. Hyperleptinemia plays a key role in the pathogenesis of complications associated with CKD such as cachexia, protein energy wasting, chronic inflammation, insulin resistance, cardiovascular damages and bone complications. Leptin is also involved in the progression of renal disease through its pro-fibrotic and pro-hypertensive actions. Most of the adverse effects of leptin have been documented both experimentally and clinically. Leptin may therefore be considered as an uremic toxin in CKD. The aim of this review is to summarize the pathophysiological and clinical role of leptin in in vitro studies, experimental models, as well as in patients suffering from CKD.


Assuntos
Inflamação/metabolismo , Leptina/metabolismo , Insuficiência Renal Crônica/metabolismo , Toxinas Biológicas/metabolismo , Tecido Adiposo/metabolismo , Caquexia/metabolismo , Caquexia/patologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Inflamação/patologia , Resistência à Insulina , Leptina/química , Leptina/genética , Receptores para Leptina/metabolismo , Insuficiência Renal Crônica/patologia , Toxinas Biológicas/química , Toxinas Biológicas/genética
14.
J Ren Nutr ; 24(5): 286-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24480117

RESUMO

Protein-bound uremic toxins (i.e., indoxyl sulfate or p-cresyl sulfate), produced by intestinal bacteria, are accumulated in the plasma of chronic kidney disease (CKD) patients. These toxins interact negatively with biological functions, having potent oxidative stress-inducing effects and a pathological effect on cardiovascular disease. Recent research in CKD has shown that oxidative stress and inflammation can be compounded by impaired activation of the nuclear factor (erythroid-2-related factor)-2 (Nrf2)-Kelch-like ECH associating protein-1 (Keap1) pathway, a major cellular defense mechanism. However, to date, many questions arise regarding the role of this system in CKD. For example, protein-bound uremic toxins promote oxidative stress in CKD patients, but their putative effect on the Nrf2-Keap1 system has yet to be examined in these patients. This review will focus on the putative relationship among protein-bound uremic toxins, oxidative stress, and a possible decreased expression of Nrf2 in CKD.


Assuntos
Antioxidantes/metabolismo , Cresóis/sangue , Indicã/sangue , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Renal Crônica/sangue , Ésteres do Ácido Sulfúrico/sangue , Regulação da Expressão Gênica , Humanos , Inflamação/sangue , Intestinos/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 1 Associada a ECH Semelhante a Kelch , Microbiota/fisiologia , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
Biochimie ; 95(10): 1811-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764390

RESUMO

Several inositol isomers and in particular myo-inositol (MI) and D-chiro-inositol (DCI), were shown to possess insulin-mimetic properties and to be efficient in lowering post-prandial blood glucose. In addition, abnormalities in inositol metabolism are associated with insulin resistance and with long term microvascular complications of diabetes, supporting a role of inositol or its derivatives in glucose metabolism. The aim of this review is to focus on the potential benefits of a dietary supplement of myo-inositol, by far the most common inositol isomer in foodstuffs, in human disorders associated with insulin resistance (polycystic ovary syndrome, gestational diabetes mellitus or metabolic syndrome) or in prevention or treatment of some diabetic complications (neuropathy, nephropathy, cataract). The relevance of such a nutritional strategy will be discussed for each context on the basis of the clinical and/or animal studies. The dietary sources of myo-inositol and its metabolism from its dietary uptake to its renal excretion will be also covered in this review. Finally, the actual insights into inositol insulin-sensitizing effects will be addressed and in particular the possible role of inositol glycans as insulin second messengers.


Assuntos
Catarata/metabolismo , Diabetes Gestacional/metabolismo , Nefropatias Diabéticas/metabolismo , Inositol/metabolismo , Síndrome Metabólica/metabolismo , Síndrome do Ovário Policístico/metabolismo , Animais , Glicemia/metabolismo , Catarata/fisiopatologia , Catarata/prevenção & controle , Diabetes Gestacional/dietoterapia , Diabetes Gestacional/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Dieta , Feminino , Humanos , Inositol/administração & dosagem , Inositol/farmacocinética , Insulina/metabolismo , Resistência à Insulina , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/fisiopatologia , Síndrome do Ovário Policístico/dietoterapia , Síndrome do Ovário Policístico/fisiopatologia , Gravidez
16.
Kidney Int ; 83(5): 878-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423258

RESUMO

Chronic kidney disease (CKD) is frequently associated with protein-energy wasting, a recognized strong predictive factor of mortality. Zinc α2-glycoprotein (ZAG) is a new adipokine involved in body weight control through its lipid-mobilizing activity. Here we tested whether the uremic environment in CKD could alter ZAG production by white adipose tissue and contribute to CKD-associated metabolic disturbances. Compared with normal plasma, uremic plasma induced a significant increase in ZAG synthesis (124%), was associated with a significant increase in basal lipolysis (31%), and significantly blunted lipogenesis (-53%) in 3T3-L1 adipocytes in vitro. In 5/6 nephrectomized rats and mice in vivo, there was a significant decrease in white adipose tissue accretion (-44% and -43%, respectively) and a significantly higher white adipose tissue content of ZAG protein than in sham-operated, pair-fed control animals (498% and 106%, respectively). Subcutaneous white adipose tissue biopsies from patients with end-stage renal disease exhibited a higher content of ZAG (573%) than age-matched controls. Thus, the ZAG content is increased in white adipose tissue from patients or animal models with CKD. Overproduction of ZAG in CKD could be a major contributor to metabolic disturbances associated with CKD.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas de Transporte/sangue , Glicoproteínas/sangue , Insuficiência Renal Crônica/sangue , Células 3T3-L1 , Adipocinas , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Humanos , Falência Renal Crônica/sangue , Lipogênese , Lipólise , Masculino , Camundongos , Pessoa de Meia-Idade , Diálise Peritoneal , Ratos , Ratos Wistar , Diálise Renal , Insuficiência Renal Crônica/terapia , Regulação para Cima , Uremia/sangue
17.
J Nutr Biochem ; 24(2): 457-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22658648

RESUMO

Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (-33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Inositol/farmacologia , Resistência à Insulina , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Administração Oral , Animais , Feminino , Teste de Tolerância a Glucose , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Camundongos , Músculo Esquelético/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Endocrinology ; 153(5): 2099-111, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22396448

RESUMO

Numerous oxidants are produced as by-products of aerobic cell metabolism, and there is growing evidence that they play key roles in the pathogenesis of insulin resistance. Under conditions of oxidative stress, lipid peroxidation of ω6-polyunsaturated fatty acids leads to the production of 4-hydroxy-2-nonenal (4-HNE). Several lines of evidence suggest that 4-HNE could be involved in the pathophysiology of metabolic diseases; therefore, in this study we assessed the direct effects of 4-HNE on skeletal muscle insulin sensitivity. Gastrocnemius muscle and L6 muscle cells were treated with 4-HNE. Insulin signaling was measured by Western blotting and glucose uptake using 2-deoxy-d-[3H]glucose. Carbonyl stress, glutathione content, and oxidative stress were assessed as potential mechanisms leading to insulin resistance. Protection of cells was induced by pretreatment with 3H-1,2-dithiole-3-thione, N-acetyl-cysteine, aminoguanidine, or S-adenosyl-methionine. 4-HNE induced a time- and dose-dependent decrease in insulin signaling and insulin-induced glucose uptake in muscle. It induced a state of carbonyl stress through adduction of proteins as well as a depletion in reduced glutathione and production of radical oxygen species. A pharmacological increase in glutathione pools was achieved by 3H-1,2-dithiole-3-thione and protected the cells against all deleterious effects of 4-HNE; furthermore, N-acetylcysteine, aminoguanidine, and S-adenosylmethionine prevented 4-HNE noxious effects. 4-HNE can impair insulin action in muscle cells through oxidative stress and oxidative damage to proteins, eventually leading to insulin resistance. These deleterious effects can be prevented by pretreatment with antioxidants, scavengers, or an increase in intracellular glutathione pools. Use of such molecules could represent a novel strategy to combat insulin resistance and other oxidative stress-associated pathologies.


Assuntos
Aldeídos/farmacologia , Resistência à Insulina/fisiologia , Peroxidação de Lipídeos/fisiologia , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Glutationa/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Am J Physiol Endocrinol Metab ; 302(3): E374-86, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094473

RESUMO

Low-grade inflammation observed in obesity is a risk factor for cardiovascular disease. Recent studies revealed that this would be linked to gut-derived endotoxemia during fat digestion in high-fat diets, but nothing is known about the effect of lipid composition. The study was designed to test the impact of oil composition of high-fat diets on endotoxin metabolism and inflammation in mice. C57/Bl6 mice were fed for 8 wk with chow or isocaloric isolipidic diets enriched with oils differing in fatty acid composition: milk fat, palm oil, rapeseed oil, or sunflower oil. In vitro, adipocytes (3T3-L1) were stimulated or not with lipopolysaccharide (LPS; endotoxin) and incubated with different fatty acids. In mice, the palm group presented the highest level of IL-6 in plasma (P < 0.01) together with the highest expression in adipose tissue of IL-1ß and of LPS-sensing TLR4 and CD14 (P < 0.05). The higher inflammation in the palm group was correlated with a greater ratio of LPS-binding protein (LBP)/sCD14 in plasma (P < 0.05). The rapeseed group resulted in higher sCD14 than the palm group, which was associated with lower inflammation in both plasma and adipose tissue despite higher plasma endotoxemia. Taken together, our results reveal that the palm oil-based diet resulted in the most active transport of LPS toward tissues via high LBP and low sCD14 and the greatest inflammatory outcomes. In contrast, a rapeseed oil-based diet seemed to result in an endotoxin metabolism driven toward less inflammatory pathways. This shows that dietary fat composition can contribute to modulate the onset of low-grade inflammation through the quality of endotoxin receptors.


Assuntos
Tecido Adiposo Branco/imunologia , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/etiologia , Doenças Metabólicas/imunologia , Receptores Imunológicos/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas de Transporte/sangue , Citocinas/sangue , Ácidos Graxos Monoinsaturados , Ácidos Graxos não Esterificados/efeitos adversos , Ácidos Graxos não Esterificados/sangue , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/isolamento & purificação , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Receptores de Lipopolissacarídeos/sangue , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/sangue , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Óleo de Palmeira , Óleos de Plantas/efeitos adversos , Distribuição Aleatória , Óleo de Brassica napus , Óleo de Girassol , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA