Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811943

RESUMO

The current standard for measuring coronary artery calcification to determine the extent of atherosclerosis is by calculating the Agatston score from computed tomography (CT). However, the Agatston score disregards pixel values less than 130 Hounsfield Units (HU) and calcium regions less than 1 mm2. Due to this thresholding, the score is not sensitive to small, weakly attenuating regions of calcium deposition and may not detect nascent micro-calcification. A recently proposed metric called the spatially weighted calcium score (SWCS) also utilizes CT but does not include a threshold for HU and does not require elevated signals in contiguous pixels. Thus, the SWCS is sensitive to weakly attenuating, smaller calcium deposits and may improve the measurement of coronary heart disease risk. Currently, the SWCS is underutilized owing to the added computational complexity. To promote translation of the SWCS into clinical research and reliable, repeatable computation of the score, the aim of this study was to develop a semi-automatic graphical tool that calculates both the SWCS and the Agatston score. The program requires gated cardiac CT scans with a calcium hydroxyapatite phantom in the field of view. The phantom allows for deriving a weighting function, from which each pixel's weight is adjusted, allowing for the mitigation of signal variations and variability between scans. With all three anatomical views visible simultaneously, the user traces the course of the four main coronary arteries by placing points or regions of interest. Features such as scroll-to-zoom, double-click to delete, and brightness/contrast adjustment, along with written guidance at every step, make the program user-friendly and easy to use. Once tracing the arteries is complete, the program generates reports, which include the scores and snapshots of any visible calcium. The SWCS may reveal the presence of subclinical disease, which may be used for early intervention and lifestyle changes.


Assuntos
Calcinose , Doença da Artéria Coronariana , Humanos , Cálcio , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Reprodutibilidade dos Testes , Angiografia Coronária/métodos
2.
JACC Basic Transl Sci ; 8(7): 801-816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37547068

RESUMO

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.

3.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200207, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34218675

RESUMO

Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Imagem Multimodal/estatística & dados numéricos , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Sistema Cardiovascular/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Movimento (Física) , Movimento , Contração Miocárdica , Neoplasias/diagnóstico por imagem , Respiração , Software
4.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125893

RESUMO

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Nanotecnologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animais , Comportamento Animal , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Imunoterapia , Lipoproteínas HDL/metabolismo , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
ACS Nano ; 14(7): 7832-7846, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32413260

RESUMO

Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvß3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Animais , Integrina alfaV , Integrina alfaVbeta3 , Lipídeos , Camundongos , Neoplasias/tratamento farmacológico , Fagócitos
6.
Phys Med Biol ; 65(8): 085016, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32109893

RESUMO

Despite well-established dosimetry in clinical radiotherapy, dose measurements in pre-clinical and radiobiology studies are frequently inadequate, thus undermining the reliability and reproducibility of published findings. The lack of suitable dosimetry protocols, coupled with the increasing complexity of pre-clinical irradiation platforms, undermines confidence in preclinical studies and represents a serious obstacle in the translation to clinical practice. To accurately measure output of a pre-clinical radiotherapy unit, appropriate Codes of Practice (CoP) for medium energy x-rays needs to be employed. However, determination of absorbed dose to water (Dw) relies on application of backscatter factor (Bw) employing in-air method or carrying out in-phantom measurement at the reference depth of 2 cm in a full backscatter (i.e. 30 × 30 × 30 cm3) condition. Both of these methods require thickness of at least 30 cm of underlying material, which are never fulfilled in typical pre-clinical irradiations. This work is focused on evaluation the effects of the lack of recommended reference conditions in dosimetry measurements for pre-clinical settings and is aimed at extending the recommendations of the current CoP to practical experimental conditions and highlighting the potential impact of the lack of correct backscatter considerations on radiobiological studies.


Assuntos
Radiometria/normas , Terapia por Raios X , Imagens de Fantasmas , Radiobiologia , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA