Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Med Educ ; 24(1): 379, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589919

RESUMO

The United States government makes a substantial investment in biomedical training programs each year. However, for most trainees, these opportunities do not translate into career progression in academic research pathways. Only about one-fifth of postdoctoral fellows eventually secure a tenure-track faculty position, and even among these candidates, attrition is high. Although a number of factors govern career choices and career longevity, the transition from trainee to faculty is a challenging process and requires knowledge and skills that are not necessarily developed during a traditional university experience. Many postdoctoral fellows receive adequate training in research skills and scientific communication, but new faculty report not being sufficiently prepared for the job search process and for starting their labs. To address this critical training gap, the ITERT core (Interdisciplinary Translational Education and Research Training) and the Office of Postdoctoral Fellows at the University of Texas MD Anderson Cancer Center implemented a structured course for both postdoctoral fellows and senior PhD students to provide formalized training for successfully navigating academic positions in biomedical research. Here we report on the pilot Navigating Academic Careers course conducted in 2021-2022 for 30 PhD students and postdocs. The nine-module course was conducted over 13 weeks in 25.5 h instructional sessions. The key educational objectives included 1) navigating the job application and the interview/negotiation process, 2) hiring, leading, and mentoring lab personnel and program support staff, 3) project administration and financial stewardship, 4) managing time and work-life balance and 5) developing collaborations, branding, personalized niche, and networking. Survey-based analysis at the time of the course was used to capture the participants' assessment of the course content, organization, and delivery, with a follow-up survey conducted approximately 2 years post-course (2024) to evaluate longer-term impacts of the training. Initial in-course assessment revealed that 89.9% of respondents found the scope and instructional content appropriate, and 91.1% found the course relevant and applicable to their career needs. Longer-term post-course evaluation indicated that 80% of respondents applied the learnings of the course, that 80% reported feeling more confident in navigating an academic job search, and that 66.6% continued to report agreement with the course preparing them for their current role/ongoing job search, with 46.7% already securing jobs in academic research, including as independent faculty. The outcomes of this pilot course suggest that integrating this into the broader postdoctoral training curriculum can enhance both the transition and early-career success of talented scientists-in-training into working professionals in biomedical careers, as faculty and science-trained staff.


Assuntos
Pesquisa Biomédica , Tutoria , Humanos , Estados Unidos , Currículo , Docentes , Mentores , Escolha da Profissão
2.
Clin Cancer Res ; 30(13): 2751-2763, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683200

RESUMO

PURPOSE: To determine the efficacy and safety of risk-adapted combinations of androgen signaling inhibitors and inform disease classifiers for metastatic castration-resistant prostate cancers. PATIENTS AND METHODS: In a modular, randomized phase II trial, 192 men were treated with 8 weeks of abiraterone acetate, prednisone, and apalutamide (AAPA; module 1) and then allocated to modules 2 or 3 based on satisfactory (≥50% PSA decline from baseline and <5 circulating tumor cell/7.5 mL) versus unsatisfactory status. Men in the former were randomly assigned to continue AAPA alone (module 2A) or with ipilimumab (module 2B). Men in the latter group had carboplatin + cabazitaxel added to AAPA (module 3). Optional baseline biopsies were subjected to correlative studies. RESULTS: Median overall survival (from allocation) was 46.4 [95% confidence interval (CI), 39.2-68.2], 41.4 (95% CI, 33.3-49.9), and 18.7 (95% CI, 14.3-26.3) months in modules 2A (n = 64), 2B (n = 64), and 3 (n = 59), respectively. Toxicities were within expectations. Of 192 eligible patients, 154 (80.2%) underwent pretreatment metastatic biopsies. The aggressive-variant prostate cancer molecular profile (defects in ≥2 of p53, RB1, and PTEN) was associated with unsatisfactory status. Exploratory analyses suggested that secreted phosphoprotein 1-positive and insulin-like growth factor-binding protein 2-positive macrophages, druggable myeloid cell markers, and germline pathogenic mutations were enriched in the unsatisfactory group. CONCLUSIONS: Adding ipilimumab to AAPA did not improve outcomes in men with androgen-responsive metastatic castration-resistant prostate cancer. Despite the addition of carboplatin + cabazitaxel, men in the unsatisfactory group had shortened survivals. Adaptive designs can enrich for biologically and clinically relevant disease subgroups to contribute to the development of marker-informed, risk-adapted therapy strategies in men with prostate cancer.


Assuntos
Acetato de Abiraterona , Protocolos de Quimioterapia Combinada Antineoplásica , Prednisona , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Acetato de Abiraterona/uso terapêutico , Acetato de Abiraterona/administração & dosagem , Tioidantoínas/administração & dosagem , Tioidantoínas/uso terapêutico , Tioidantoínas/efeitos adversos , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Ipilimumab/administração & dosagem , Ipilimumab/uso terapêutico , Taxoides
3.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
4.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136389

RESUMO

Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.

5.
Cell Rep ; 42(12): 113470, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979166

RESUMO

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Assuntos
Carcinoma , Filamentos Intermediários , Humanos , Vimentina/metabolismo , Fosforilação , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Carcinoma/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica/patologia
6.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686633

RESUMO

Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.

7.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805010

RESUMO

The aggressive variant prostate cancer molecular profile (AVPC-m), composed of combined defects in TP53, RB1 and PTEN, characterizes a subset of prostate cancers linked to androgen indifference and platinum sensitivity. To contribute to the optimization of the AVPC-m assessment for inclusion in prospective clinical trials, we investigated the status of the AVPC-m components in 28 patient tumor-derived xenografts (PDXs) developed at MDACC. We subjected single formalin-fixed, paraffin-embedded (FFPE) blocks from each PDX to immunohistochemistry (IHC), targeted next-generation genomic sequencing (NGS) and Clariom-S Affymetrix human microarray expression profiling. Standard validated IHC assays and a 10% labeling index cutoff resulted in high reproducibility across three separate laboratories and three independent readers for all tumor suppressors, as well as strong correlations with loss-of-function transcriptional scores (LOF-TS). Adding intensity assessment to labeling indices strengthened the association between IHC results and LOF-TS for TP53 and RB1, but not for PTEN. For TP53, genomic alterations determined by NGS had slightly higher agreement scores with LOF-TS than aberrant IHC, while for RB1 and PTEN, NGS and IHC determinations resulted in similar agreement scores with LOF-TS. Nonetheless, our results indicate that the AVPC-m components can be assessed reproducibly by IHC using various widely available standardized assays.

8.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771571

RESUMO

Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells' ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial-mesenchymal (EMT) and mesenchymal-epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation.

9.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941680

RESUMO

The epithelial-to-mesenchymal transition (EMT) plays a critical role during normal development and in cancer progression. EMT is induced by various signaling pathways, including TGF-ß, BMP, Wnt-ß-catenin, NOTCH, Shh, and receptor tyrosine kinases. In this study, we performed single-cell RNA sequencing on MCF10A cells undergoing EMT by TGF-ß1 stimulation. Our comprehensive analysis revealed that cells progress through EMT at different paces. Using pseudotime clustering reconstruction of gene-expression profiles during EMT, we found sequential and parallel activation of EMT signaling pathways. We also observed various transitional cellular states during EMT. We identified regulatory signaling nodes that drive EMT with the expression of important microRNAs and transcription factors. Using a random circuit perturbation methodology, we demonstrate that the NOTCH signaling pathway acts as a key driver of TGF-ß-induced EMT. Furthermore, we demonstrate that the gene signatures of pseudotime clusters corresponding to the intermediate hybrid EMT state are associated with poor patient outcome. Overall, this study provides insight into context-specific drivers of cancer progression and highlights the complexities of the EMT process.


Assuntos
Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Célula Única/métodos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Neoplasias/classificação , Neoplasias/genética , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
11.
NPJ Breast Cancer ; 7(1): 66, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050189

RESUMO

Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.

12.
Br J Cancer ; 125(2): 176-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33795809

RESUMO

BACKGROUND: The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. METHODS: We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. RESULTS: We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. CONCLUSIONS: CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


Assuntos
Neoplasias da Mama/imunologia , Antígenos CD4/genética , Antígenos CD8/genética , Linfócitos T CD8-Positivos/transplante , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Fator Plaquetário 4/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Células Supressoras Mieloides/imunologia , Células Neoplásicas Circulantes/imunologia , Fator Plaquetário 4/administração & dosagem , Fator Plaquetário 4/farmacologia , Análise de Sobrevida , Transplante Isogênico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Br J Cancer ; 124(1): 259-269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299129

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) enables dissociation of tumour cells from the primary tumour mass, invasion through the extracellular matrix, intravasation into blood vessels and colonisation of distant organs. Cells that revert to the epithelial state via the mesenchymal-epithelial transition cause metastases, the primary cause of death in cancer patients. EMT also empowers cancer cells with stem-cell properties and induces resistance to chemotherapeutic drugs. Understanding the driving factors of EMT is critical for the development of effective therapeutic interventions. METHODS: This manuscript describes the generation of a database containing EMT gene signatures derived from cell lines, patient-derived xenografts and patient studies across cancer types and multiomics data and the creation of a web-based portal to provide a comprehensive analysis resource. RESULTS: EMTome incorporates (i) EMT gene signatures; (ii) EMT-related genes with multiomics features across different cancer types; (iii) interactomes of EMT-related genes (miRNAs, transcription factors, and proteins); (iv) immune profiles identified from The Cancer Genome Atlas (TCGA) cohorts by exploring transcriptomics, epigenomics, and proteomics, and drug sensitivity and (iv) clinical outcomes of cancer cohorts linked to EMT gene signatures. CONCLUSION: The web-based EMTome portal is a resource for primary and metastatic tumour research publicly available at www.emtome.org .


Assuntos
Bases de Dados Genéticas , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Transcriptoma/genética , Humanos , Internet , Neoplasias/patologia
14.
Cancers (Basel) ; 11(10)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652551

RESUMO

Identifying bioenergetics that facilitate the epithelial to mesenchymal transition (EMT) in breast cancer cells may uncover targets to treat incurable metastatic disease. Metastasis is the number one cause of cancer-related deaths; therefore, it is urgent to identify new treatment strategies to prevent the initiation of metastasis. To characterize the bioenergetics of EMT, we compared metabolic activities and gene expression in cells induced to differentiate into the mesenchymal state with their epithelial counterparts. We found that levels of GLS2, which encodes a glutaminase, are inversely associated with EMT. GLS2 down-regulation was correlated with reduced mitochondrial activity and glutamine independence even in low-glucose conditions. Restoration of GLS2 expression in GLS2-negative breast cancer cells rescued mitochondrial activity, enhanced glutamine utilization, and inhibited stem-cell properties. Additionally, inhibition of expression of the transcription factor FOXC2, a critical regulator of EMT in GLS2-negative cells, restored GLS2 expression and glutamine utilization. Furthermore, in breast cancer patients, high GLS2 expression is associated with improved survival. These findings suggest that epithelial cancer cells rely on glutamine and that cells induced to undergo EMT become glutamine independent. Moreover, the inhibition of EMT leads to a GLS2-directed metabolic shift in mesenchymal cancer cells, which may make these cells susceptible to chemotherapies.

15.
Cancers (Basel) ; 11(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137625

RESUMO

Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors.

16.
Breast Cancer Res ; 21(1): 37, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845991

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBCs), which lack receptors for estrogen, progesterone, and amplification of epidermal growth factor receptor 2, are highly aggressive. Consequently, patients diagnosed with TNBCs have reduced overall and disease-free survival rates compared to patients with other subtypes of breast cancer. TNBCs are characterized by the presence of cancer cells with mesenchymal properties, indicating that the epithelial to mesenchymal transition (EMT) plays a major role in the progression of this disease. The EMT program has also been implicated in chemoresistance, tumor recurrence, and induction of cancer stem cell (CSC) properties. Currently, there are no targeted therapies for TNBC, and hence, it is critical to identify the novel targets to treat TNBC. METHODS: A library of compounds was screened for their ability to inhibit EMT in cells with mesenchymal phenotype as assessed using the previously described Z-cad reporters. Of the several drugs tested, GSK3ß inhibitors were identified as EMT inhibitors. The effects of GSK3ß inhibitors on the properties of TNBC cells with a mesenchymal phenotype were assessed using qRT-PCR, flow cytometry, western blot, mammosphere, and migration and cell viability assays. Publicly available datasets also were analyzed to examine if the expression of GSK3ß correlates with the overall survival of breast cancer patients. RESULTS: We identified a GSK3ß inhibitor, BIO, in a drug screen as one of the most potent inhibitors of EMT. BIO and two other GSK3ß inhibitors, TWS119 and LiCl, also decreased the expression of mesenchymal markers in several different cell lines with a mesenchymal phenotype. Further, inhibition of GSK3ß reduced EMT-related migratory properties of cells with mesenchymal properties. To determine if GSK3ß inhibitors target mesenchymal-like cells by affecting the CSC population, we employed mammosphere assays and profiled the stem cell-related cell surface marker CD44+/24- in cells after exposure to GSK3ß inhibitors. We found that GSK3ß inhibitors indeed decreased the CSC properties of cell types with mesenchymal properties. We treated cells with epithelial and mesenchymal properties with GSK3ß inhibitors and found that GSK3ß inhibitors selectively kill cells with mesenchymal attributes while sparing cells with epithelial properties. We analyzed patient data to identify genes predictive of poor clinical outcome that could serve as novel therapeutic targets for TNBC. The Wnt signaling pathway is critical to EMT, but among the various factors known to be involved in Wnt signaling, only the higher expression of GSK3ß correlated with poorer overall patient survival. CONCLUSIONS: Taken together, our data demonstrate that GSK3ß is a potential target for TNBCs and suggest that GSK3ß inhibitors could serve as selective inhibitors of EMT and CSC properties for the treatment of a subset of aggressive TNBC. GSK3ß inhibitors should be tested for use in combination with standard-of-care drugs in preclinical TNBC models.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Conjuntos de Dados como Assunto , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Via de Sinalização Wnt
17.
Biochim Biophys Acta Rev Cancer ; 1870(2): 229-238, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29981816

RESUMO

Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.


Assuntos
Carcinoma Neuroendócrino/patologia , Transição Epitelial-Mesenquimal/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Animais , Transdiferenciação Celular , Humanos , Masculino
18.
Front Oncol ; 8: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600194

RESUMO

Combined loss of tumor suppressors (TSPs), PTEN, TP53, and RB1, is highly associated with small cell carcinoma of prostate phenotype. Recent genomic studies of human tumors as well as analyses in mouse genetic models have revealed a unique role for these TSPs in dictating epithelial lineage plasticity-a phenomenon that plays a critical role in the development of aggressive variant prostate cancer (PCa) and associated androgen therapy resistance. Here, we summarize recently published key observations on this topic and hypothesize a possible mechanism by which concurrent loss of TSPs could potentially regulate the PCa disease phenotype.

19.
Proc Natl Acad Sci U S A ; 114(46): E9903-E9912, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087350

RESUMO

Expression of the transcription factor FOXC2 is induced and necessary for successful epithelial-mesenchymal transition, a developmental program that when activated in cancer endows cells with metastatic potential and the properties of stem cells. As such, identifying agents that inhibit the growth of FOXC2-transformed cells represents an attractive approach to inhibit chemotherapy resistance and metastatic dissemination. From a high throughput synthetic lethal screen, we identified a small molecule, FiVe1, which selectively and irreversibly inhibits the growth of mesenchymally transformed breast cancer cells and soft tissue sarcomas of diverse histological subtypes. FiVe1 targets the intermediate filament and mesenchymal marker vimentin (VIM) in a mode which promotes VIM disorganization and phosphorylation during metaphase, ultimately leading to mitotic catastrophe, multinucleation, and the loss of stemness. These findings illustrate a previously undescribed mechanism for interrupting faithful mitotic progression and may ultimately inform the design of therapies for a broad range of mesenchymal cancers.


Assuntos
Mitose/efeitos dos fármacos , Sarcoma/metabolismo , Vimentina/metabolismo , Vimentina/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Descoberta de Drogas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Filamentos Intermediários/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação , Sarcoma/patologia , Fatores de Transcrição/efeitos dos fármacos , Vimentina/química
20.
Oncotarget ; 8(39): 65548-65565, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029452

RESUMO

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA