Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Environ Microbiol ; 23(9): 5639-5649, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423890

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in cystic fibrosis patients. Both organisms often cause chronic and recalcitrant infections, in large part due to their ability to form biofilms, being these mixed-species infections correlated with poor clinical outcomes. In this study, the hypothesis that S. aureus adopts phenotypes allowing its coexistence with P. aeruginosa during biofilm growth was put forward. We noticed that S. aureus undergoes a viable but non-cultivable (VBNC) state in the dominated P. aeruginosa dual-species consortia, whatsoever the strains used to form the biofilms. Moreover, an increased expression of genes associated with S. aureus virulence was detected suggesting that the phenotypic switching to VBNC state might account for S. aureus pathogenicity and, in turn, influence the clinical outcome of the mixed-species infection. Thus, P. aeruginosa seems to induce both phenotypic and transcriptomic changes in S. aureus, helping its survival and coexistence in the dual-species biofilms. Overall, our findings illustrate how interspecies interactions can modulate bacterial virulence in vitro, contributing to a better understanding of the behaviour of P. aeruginosa-S. aureus dual-species biofilms.


Assuntos
Pseudomonas aeruginosa , Infecções Estafilocócicas , Biofilmes , Humanos , Interações Microbianas , Staphylococcus aureus
3.
Future Microbiol ; 16: 879-893, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34319132

RESUMO

Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion:P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.


Assuntos
Antibacterianos , Fibrose Cística , Farmacorresistência Bacteriana , Pseudomonas aeruginosa , Staphylococcus aureus , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas , Infecções Estafilocócicas , Virulência
4.
Artigo em Inglês | MEDLINE | ID: mdl-32974221

RESUMO

Cystic fibrosis (CF) disease provokes the accumulation of thick and viscous sputum in the lungs, favoring the development of chronic and polymicrobial infections. Pseudomonas aeruginosa is the main bacterium responsible for these chronic infections, and much of the difficulty involved in eradicating it is due to biofilm formation. However, this could be mitigated using adjuvant compounds that help or potentiate the antibiotic action. Therefore, the main goal of this study was to search for substances that function as adjuvants and also as biofilm-controlling compounds, preventing or dismantling P. aeruginosa biofilms formed in an in vitro CF airway environment. Dual combinations of compounds with subinhibitory (1 and 2 mg/L) and inhibitory concentrations (4 mg/L) of ciprofloxacin were tested to inhibit the bacterial growth and biofilm formation (prophylactic approach) and to eradicate 24-h-old P. aeruginosa populations, including planktonic cells and biofilms (treatment approach). Our results revealed that aspartic acid (Asp) and succinic acid (Suc) restored ciprofloxacin action against P. aeruginosa. Suc combined with 2 mg/L of ciprofloxacin (Suc-Cip) was able to eradicate bacteria, and Asp combined with 4 mg/L of ciprofloxacin (Asp-Cip) seemed to eradicate the whole 24-h-old populations, including planktonic cells and biofilms. Based on biomass depletion data, we noted that Asp induced cell death and Suc seemed somehow to block or reduce the expression of ciprofloxacin resistance. As far as we know, this kind of action had not been reported up till now. The presence of Staphylococcus aureus and Burkholderia cenocepacia did not affect the efficacy of the Asp-Cip and Suc-Cip therapies against P. aeruginosa and, also important, P. aeruginosa depletion from polymicrobial communities did not create a window of opportunity for these species to thrive. Rather the contrary, Asp and Suc also improved ciprofloxacin action against B. cenocepacia. Further studies on the cytotoxicity using lung epithelial cells indicated toxicity of Suc-Cip caused by the Suc. In conclusion, we provided evidences that Asp and Suc could be potential ciprofloxacin adjuvants to eradicate P. aeruginosa living within polymicrobial communities. Asp-Cip and Suc-Cip could be promising therapeutic options to cope with CF treatment failures.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Ácido Aspártico , Biofilmes , Ciprofloxacina/farmacologia , Fibrose Cística/complicações , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Ácido Succínico
5.
Int J Med Microbiol ; 308(8): 1053-1064, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30377031

RESUMO

Pseudomonas aeruginosa chronic infections are the major cause of high morbidity and mortality in cystic fibrosis (CF) patients due to the use of sophisticated mechanisms of adaptation, including clonal diversification into specialized CF-adapted phenotypes. In contrast to chronic infections, very little is known about what occurs after CF lungs colonization and at early infection stages. This study aims to investigate the early events of P. aeruginosa adaptation to CF environment, in particular, to inspect the occurrence of clonal diversification at early stages of infection development and its impact on antibiotherapy effectiveness. To mimic CF early infections, three P. aeruginosa strains were long-term grown in artificial sputum (ASM) over 10 days and phenotypic diversity verified through colony morphology characterization. Biofilm sub- and inhibitory concentrations of ciprofloxacin were applied to non- and diversified populations to evaluate antibiotic effectiveness on P. aeruginosa eradication. Our results demonstrated that clonal diversification might occur after ASM colonization and growth. However, this phenotypic diversification did not compromise ciprofloxacin efficacy in P. aeruginosa eradication since a biofilm minimal inhibitory dosage would be applied. The expected absence of mutators in P. aeruginosa populations led us to speculate that clonal diversification in the absence of ciprofloxacin treatments could be driven by niche specialization. Yet, biofilm sub-inhibitory concentrations of ciprofloxacin seemed to overlap niche specialization as "fitter" variants emerged, such as mucoid, small colony and pinpoint variants, known to be highly resistant to antibiotics. The pathogenic potential of all emergent colony morphotypes-associated bacteria, distinct from the wild-morphotypes, revealed that P. aeruginosa evolved to a non-swimming phenotype. Impaired swimming motility seemed to be one of the first evolutionary steps of P. aeruginosa in CF lungs that could pave the way for further adaptation steps including biofilm formation and progress to chronic infection. Based on our findings, impaired swimming motility seemed to be a candidate to disease marker of P. aeruginosa infection development. Despite our in vitro CF model represents a step forward towards in vivo scenario simulation and provided valuable insights about the early events, more and distinct P. aeruginosa strains should be studied to strengthen our results.


Assuntos
Adaptação Fisiológica , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Escarro/microbiologia , Antibacterianos/administração & dosagem , Translocação Bacteriana , Biofilmes/efeitos dos fármacos , Ciprofloxacina/administração & dosagem , Fibrose Cística/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fenótipo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/efeitos dos fármacos , Fatores de Tempo
6.
Acta Microbiol Immunol Hung ; 64(2): 179-189, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842452

RESUMO

Escherichia coli has developed sophisticated means to sense, respond, and adapt in stressed environment. It has served as a model organism for studies in molecular genetics and physiology since the 1960s. Stress response genes are induced whenever a cell needs to adapt and survive under unfavorable growth conditions. Two of the possible important genes are rpoS and bolA. The rpoS gene has been known as the alternative sigma (σ) factor, which controls the expression of a large number of genes, which are involved in responses to various stress factors as well as transition to stationary phase from exponential form of growth. Morphogene bolA response to stressed environment leads to round morphology of E. coli cells, but little is known about its involvement in biofilms and its development or maintenance. This study has been undertaken to address the adherence pattern and formation of biofilms by E. coli on stainless steel, polypropylene, and silicone surfaces after 24 h of growth at 37 °C. Scanning electron microscopy was used for direct examination of the cell attachment and biofilm formation on various surfaces and it was found that, in the presence of bolA, E. coli cells were able to attach to the stainless steel and silicone very well. By contrast, polypropylene surface was not found to be attractive for E. coli cells. This indicates that bolA responded and can play a major role in the presence and absence of rpoS in cell attachment.


Assuntos
Biofilmes , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Polipropilenos/química , Aço Inoxidável/química , Fatores de Transcrição/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo , Silicones/química , Fatores de Transcrição/genética
7.
Pathogens ; 3(3): 680-703, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25438018

RESUMO

Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA