Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1822(9): 1501-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659211

RESUMO

Ether-phospholipids represent an important group of phospholipids characterized by an alkyl or an alkenyl bond at the sn-1 position of the glycerol backbone. Plasmalogens are the most abundant form of alkenyl-glycerophospholipids, and their synthesis requires functional peroxisomes. Defects in the biosynthesis of plasmalogens are the biochemical hallmark of the human peroxisomal disorder Rhizomelic Chondrodysplasia Punctata (RCDP), which is characterized by defects in eye, bone and nervous tissue. The generation and characterization of mouse models with defects in plasmalogen levels have significantly advanced our understanding of the role and importance of plasmalogens as well as pathogenetic mechanisms underlying RCDP. A review of the current mouse models and the description of the combined knowledge gathered from the histopathological and biochemical studies is presented and discussed. Further characterization of the role and functions of plasmalogens will contribute to the elucidation of disease pathogenesis in peroxisomal and non-peroxisomal disorders. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.


Assuntos
Condrodisplasia Punctata Rizomélica/metabolismo , Modelos Animais de Doenças , Plasmalogênios/fisiologia , Animais , Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/patologia , Glucosamina 6-Fosfato N-Acetiltransferase/deficiência , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Camundongos , Camundongos Knockout , Receptor 2 de Sinal de Orientação para Peroxissomos , Plasmalogênios/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética
2.
PLoS One ; 6(12): e28539, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163031

RESUMO

A deficiency of plasmalogens, caused by impaired peroxisomal metabolism affects normal development and multiple organs in adulthood. Treatment options aimed at restoring plasmalogen levels may be relevant for the therapy of peroxisomal and non-peroxisomal disorders. In this study we determined the in vivo efficacy of an alkyl glycerol (AG), namely, 1-O-octadecyl-rac-glycerol, as a therapeutic agent for defects in plasmalogen synthesis. To achieve this, Pex7 knockout mice, a mouse model for Rhizomelic Chondrodysplasia Punctata type 1 characterized by the absence of plasmalogens, and WT mice were fed a control diet or a diet containing 2% alkyl-glycerol. Plasmalogen levels were measured in target organs and the biochemical data were correlated with the histological analysis of affected organs. Plasmalogen levels in all peripheral tissues of Pex7 KO mice fed the AG diet for 2 months normalized to the levels of AG fed WT mice. In nervous tissues of Pex7 KO mice fed the AG-diet, plasmalogen levels were significantly increased compared to control fed KO mice. Histological analysis of target organs revealed that the AG-diet was able to stop the progression of the pathology in testis, adipose tissue and the Harderian gland. Interestingly, the latter tissues are characterized by the presence of lipid droplets which were absent or reduced in size and number when ether-phospholipids are lacking, but which can be restored with the AAG treatment. Furthermore, nerve conduction in peripheral nerves was improved. When given prior to the occurrence of major pathological changes, the AG-diet prevented or ameliorated the pathology observed in Pex7 KO mice depending on the degree of plasmalogen restoration. This study provides evidence of the beneficial effects of treating a plasmalogen deficiency with alkyl-glycerol.


Assuntos
Glicerol/farmacologia , Éteres Fosfolipídicos/metabolismo , Plasmalogênios/metabolismo , Ração Animal , Animais , Linhagem Celular , Eletrofisiologia/métodos , Genótipo , Lipídeos/química , Camundongos , Camundongos Knockout , Tecido Nervoso/metabolismo , Condução Nervosa , Receptor 2 de Sinal de Orientação para Peroxissomos , Fosfolipídeos/química , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA