RESUMO
Activation of the secondary assembly instructions in the mononuclear pyrazine imide complexes [Co(III)(dpzca)2](BF4) or [Co(II)(dpzca)2] and [Ni(II)(dpzca)2] has facilitated the construction of two robust nanoporous three-dimensional coordination polymers, [Co(III)(dpzca)2Ag](BF4)2·2(H2O) [1·2(H2O)] and [Ni(II)(dpzca)2Ag]BF4·0.5(acetone) [2·0.5(acetone)]. Despite the difference in charge distribution and anion loading, the framework structures of 1·2(H2O) and 2·0.5(acetone) are isostructural. One dimensional channels along the b-axis permeate the structures and contain the tetrafluoroborate counterions (the Co(III)-based MOF has twice as many BF4(-) anions as the Ni(II)-based MOF) and guest solvent molecules. These anions are not readily exchanged whereas the solvent molecules can be reversibly removed and replaced. The H2, N2, CO2, CH4, H2O, CH3OH, and CH3CN sorption behaviors of the evacuated frameworks 1 and 2 at 298 K have been studied, and modeled, and both show very high selectivity for CO2 over N2. The increased anion loading in the channels of Co(III)-based MOF 1 relative to Ni(II)-based MOF 2 results in increased selectivity for CO2 over N2 but a decrease in the sorption kinetics and storage capacity of the framework.
RESUMO
The porous coordination framework material, Fe(NCS)2(bped)2 x 3EtOH, SCOF-3(Et) (where bped is dl-1,2-bis(4'-pyridyl)-1,2-ethanediol), displays a spin-crossover (SCO) transition that has been stimulated both thermally and by light irradiation. The one-step thermal SCO (70-180 K) is sensitive to the presence of molecular guests, with a more gradual transition (70-225 K) apparent following the desorption of ethanol molecules that hydrogen bond to the spin centers. Additional intraframework hydrogen-bonding interactions stabilize the vacant one-dimensional pore structure of the apohost, SCOF-3, despite a dramatic single-crystal to single-crystal (SC-SC) structural change upon removal of the guests. Comprehensive structural analyses throughout this transformation, from primitive orthorhombic (Pccn) to body-centered tetragonal (I4/mcm), reveal a flexing of the framework and a dilation of the channels, with an accompanying subtle distortion of the iron(II) coordination geometry. Photomagnetic measurements of the light-induced excited spin state trapping (LIESST) effect have been used to assess the degree of cooperativity in this system.
RESUMO
The family of dehydrated nanoporous Prussian Blue analogues, M(II)3[Co(III)(CN)6]2 (M(II) = Mn, Fe, Co, Ni, Cu, Zn, Cd), which contain coordinatively unsaturated divalent metal cations, undergoes reversible sorption of hydrogen gas up to 1.2 wt% (at 77 K, 101.3 kPa), the capacity of which depends on the metal ion.