Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 18(11): 1983-94, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20736932

RESUMO

Liver-directed gene therapy with adeno-associated virus (AAV) vectors effectively treats mouse models of lysosomal storage diseases (LSDs). We asked whether these results were likely to translate to patients. To understand to what extent preexisting anti-AAV8 antibodies could impede AAV8-mediated liver transduction in primates, commonly preexposed to AAV, we quantified the effects of preexisting antibodies on liver transduction and subsequent transgene expression in mouse and nonhuman primate (NHP) models. Using the highest viral dose previously reported in a clinical trial, passive transfer of NHP sera containing relatively low anti-AAV8 titers into mice blocked liver transduction, which could be partially overcome by increasing vector dose tenfold. Based on this and a survey of anti-AAV8 titers in 112 humans, we predict that high-dose systemic gene therapy would successfully transduce liver in >50% of human patients. However, although high-dose AAV8 administration to mice and monkeys with equivalent anti-AAV8 titers led to comparable liver vector copy numbers, the resulting transgene expression in primates was ~1.5-logs lower than mice. This suggests vector fate differs in these species and that strategies focused solely on overcoming preexisting vector-specific antibodies may be insufficient to achieve clinically meaningful expression levels of LSD genes using a liver-directed gene therapy approach in patients.


Assuntos
Dependovirus/genética , Terapia Genética , Hepatócitos/imunologia , Doenças por Armazenamento dos Lisossomos/terapia , Transgenes/fisiologia , alfa-Galactosidase/sangue , Animais , Anticorpos Neutralizantes/imunologia , Western Blotting , Vetores Genéticos/administração & dosagem , Células HeLa , Hepatócitos/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/imunologia , Macaca fascicularis , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmaferese , Biossíntese de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , alfa-Galactosidase/genética
2.
Mol Ther ; 9(2): 231-40, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14759807

RESUMO

The successful application of gene therapy for the treatment of genetic diseases such as Fabry is reliant on the development of vectors that are safe and that facilitate sustained expression of therapeutic levels of the transgene product. Here, we report that intravenous administration of a recombinant AAV2 vector encoding human alpha-galactosidase A under the transcriptional control of a liver-restricted enhancer/promoter (AAV2/DC190-alphagal) generated significantly higher levels of expression in BALB/c and Fabry mice than could be realized using the ubiquitous CMV promoter (AAV2/CMVHI-alphagal). Moreover, AAV2/DC190-alphagal-mediated hepatic expression of alpha-galactosidase A was sustained for 12 months in BALB/c mice and was associated with a significantly reduced immune response to the expressed enzyme. Subsequent challenge of the AAV2/DC190-alphagal-treated animals with recombinant human alpha-galactosidase A at 6 months failed to elicit the production of anti-alpha-galactosidase A antibodies, suggesting the induction of immune tolerance in these animals. The levels of expression attained with AAV2/DC190-alphagal in the Fabry mice were sufficient to reduce the abnormal accumulation of globotriaosylceramide in the liver, spleen, and heart to basal levels and in the kidney by approximately 40% at 8 weeks. Together, these results demonstrate that AAV2-mediated gene transfer that limits the expression of alpha-galactosidase A to the liver may be a viable strategy for treating Fabry disease.


Assuntos
Dependovirus/genética , Doença de Fabry/terapia , Terapia Genética , Tolerância Imunológica , Fígado/metabolismo , Regiões Promotoras Genéticas/genética , alfa-Galactosidase/uso terapêutico , Animais , DNA Recombinante/genética , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Doença de Fabry/genética , Engenharia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
3.
Am J Respir Crit Care Med ; 165(3): 419-23, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11818331

RESUMO

Post-transplant bronchiolitis obliterans (BO) is characterized by fibroproliferation and fibrous obliteration of distal airways in chronically rejected lungs. In this study, using a rat heterotopic allogeneic tracheal transplant model of BO, we evaluated the expression of transforming growth factor-beta (TGFbeta) during the development of airway fibrous obliteration. Immunohistochemical analysis revealed TGFbeta staining in infiltrating mononuclear cells at Days 2 and 7, and in the fibrous tissues until Day 21. Soluble TGFbeta receptor type III (TGFBIIIR), by blocking TGFbeta binding to its membrane receptors, functions as a TGFbeta antagonist. To study the role of TGFbeta in the development of BO, adenoviral-mediated soluble TGFBIIIR gene transfection (5 x 10(9) particles) was performed topically at the site of transplant on Day 5 after transplantation, which leads to inhibition of fibrous airway obliteration. In contrast, empty vector gene delivered through intramuscular injection, or given locally at Days 0 or 10 after tracheal transplantation had no significant effect. These results suggest that TGFbeta expressed in the allografts plays a pivotal role in the pathogenesis of BO. Soluble TGFBIIIR may competitively inhibit TGFbeta activity locally. Adenoviral-mediated soluble TGFBIIIR gene transfection should be further explored as a potential therapeutic modality for BO and other conditions involving chronic fibrosis.


Assuntos
Bronquiolite Obliterante/complicações , Proteoglicanas/genética , Fibrose Pulmonar/prevenção & controle , Receptores de Fatores de Crescimento Transformadores beta/genética , Animais , Modelos Animais de Doenças , Masculino , Proteoglicanas/biossíntese , Fibrose Pulmonar/etiologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA