Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 261(2): 227-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37665420

RESUMO

Monoterpenes are the main component in essential oils of Lippia alba. In this species, the chemical composition of essential oils varies with genome size: citral (geraniol and neral) is dominant in diploids and tetraploids, and linalool in triploids. Because environmental stress impacts various metabolic pathways, we hypothesized that stress responses in L. alba could alter the relationship between genome size and essential oil composition. Water stress affects the flowering, production, and reproduction of plants. Here, we evaluated the effect of water stress on morphophysiology, essential oil production, and the expression of genes related to monoterpene synthesis in diploid, triploid, and tetraploid accessions of L. alba cultivated in vitro for 40 days. First, using transcriptome data, we performed de novo gene assembly and identified orthologous genes using phylogenetic and clustering-based approaches. The expression of candidate genes related to terpene biosynthesis was estimated by real-time quantitative PCR. Next, we assessed the expression of these genes under water stress conditions, whereby 1% PEG-4000 was added to MS medium. Water stress modulated L. alba morphophysiology at all ploidal levels. Gene expression and essential oil production were affected in triploid accessions. Polyploid accessions showed greater growth and metabolic tolerance under stress compared to diploids. These results confirm the complex regulation of metabolic pathways such as the production of essential oils in polyploid genomes. In addition, they highlight aspects of genotype and environment interactions, which may be important for the conservation of tropical biodiversity.


Assuntos
Monoterpenos Acíclicos , Lippia , Óleos Voláteis , Verbenaceae , Lippia/genética , Lippia/química , Triploidia , Desidratação , Filogenia , Óleos Voláteis/química
2.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505684

RESUMO

Snakes of the Philodryadini tribe are included in the Dipsadidae family, which is a diverse group of rear-fanged snakes widespread in different ecological conditions, including habitats and diet. However, little is known about the composition and effects of their venoms despite their relevance for understanding the evolution of these snakes or even their impact on the occasional cases of human envenoming. In this study, we integrated venom gland transcriptomics, venom proteomics and functional assays to characterize the venoms from eight species of the Philodryadini tribe, which includes the genus Philodryas, Chlorosoma and Xenoxybelis. The most abundant components identified in the venoms were snake venom metalloproteinases (SVMPs), cysteine-rich secretory proteins (CRISPs), C-type lectins (CTLs), snake endogenous matrix metalloproteinases type 9 (seMMP-9) and snake venom serinoproteinases (SVSPs). These protein families showed a variable expression profile in each genus. SVMPs were the most abundant components in Philodryas, while seMMP-9 and CRISPs were the most expressed in Chlorosoma and Xenoxybelis, respectively. Lineage-specific differences in venom composition were also observed among Philodryas species, whereas P. olfersii presented the highest amount of SVSPs and P. agassizii was the only species to express significant amounts of 3FTx. The variability observed in venom composition was confirmed by the venom functional assays. Philodryas species presented the highest SVMP activity, whereas Chlorosoma species showed higher levels of gelatin activity, which may correlate to the seMMP-9 enzymes. The variability observed in the composition of these venoms may be related to the tribe phylogeny and influenced by their diets. In the presented study, we expanded the set of venomics studies of the Philodryadini tribe, which paves new roads for further studies on the evolution and ecology of Dipsadidae snakes.


Assuntos
Colubridae , Venenos de Serpentes , Animais , Humanos , Venenos de Serpentes/metabolismo , Colubridae/genética , Colubridae/metabolismo , Proteômica/métodos , Filogenia , Metaloproteases/genética , Metaloproteases/metabolismo , América do Sul
3.
Chem Biodivers ; 18(11): e2100604, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34608744

RESUMO

Schistosomiasis, a neglected tropical disease caused by Schistosoma species, harms over 250 million people in several countries. The treatment is achieved with only one drug, praziquantel. Cardamonin, a natural chalcone with in vitro schistosomicidal activity, has not been in vivo evaluated against Schistosoma. In this work, we evaluated the in vivo schistosomicidal activities of cardamonin against Schistosoma mansoni worms and conducted enzymatic apyrase inhibition assay, as well as molecular docking analysis of cardamonin against potato apyrase, S. mansoni NTPDase 1 and S. mansoni NTPDase 2. In a mouse model of schistosomiasis, the oral treatment with cardamonin (400 mg/kg) showed efficacy against S. mansoni, decreasing the total worm load in 46.8 % and reducing in 54.5 % the number of eggs in mice. Cardamonin achieved a significant inhibition of the apyrase activity and the three-dimensional structure of the potato apyrase, obtained by homology modeling, showed that cardamonin may interact mainly through hydrogen bonds. Molecular docking studies corroborate with the action of cardamonin in binding and inhibiting both potato apyrase and S. mansoni NTPDases.


Assuntos
Apirase/antagonistas & inibidores , Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Piperaceae/química , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Apirase/metabolismo , Biomphalaria , Chalconas/química , Chalconas/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Feminino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solanum tuberosum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA